LECTURE NOTES

ON

DESIGN AND ANALYSIS OF ALGORITHMS
ACADEMIC YEAR 2021-22

III B.Tech.-II SEMESTER(R19)

K SUREKHA Associate Professor

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

V S M COLLEGE OF ENGINEERING RAMCHANDRAPURAM

E.G DISTRICT

533255

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY: KAKINADA KAKINADA - 533 003, Andhra Pradesh, India

DEPARTMENT OF COMPUTER SCIENCE \& ENGINEERING

III Year - II Semester		\mathbf{L}	T	P	C
		$\mathbf{3}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{3}$

DESIGN AND ANALYSIS OF ALGORITHMS

Course Objectives:

- To provide an introduction to formalisms to understand, analyze and denote time complexities of algorithms
- To introduce the different algorithmic approaches for problem solving through numerous example problems
- To provide some theoretical grounding in terms of finding the lower bounds of algorithms and the NP-completeness

Course Outcomes:

- Describe asymptotic notation used for denoting performance of algorithms
- Analyze the performance of a given algorithm and denote its time complexity using the asymptotic notation for recursive and non-recursive algorithms
- List and describe various algorithmic approaches
- Solve problems using divide and conquer, greedy, dynamic programming, backtracking and branch and bound algorithmic approaches
- Apply graph search algorithms to real world problems
- Demonstrate an understanding of NP- Completeness theory and lower bound theory

UNIT I

Introduction: Algorithm Definition, Algorithm Specification, performance Analysis, Performance measurement, Asymptotic notation, Randomized Algorithms.
Sets \& Disjoint set union: introduction, union and find operations.
Basic Traversal \& Search Techniques: Techniques for Graphs, connected components and Spanning Trees, Bi-connected components and DFS.

UNIT II

Divide and Conquer: General Method, Defective chessboard, Binary Search, finding the maximum and minimum, Merge sort, Quick sort.
The Greedy Method: The general Method, container loading, knapsack problem, Job sequencing with deadlines, minimum-cost spanning Trees.

UNIT III

Dynamic Programming: The general method, multistage graphs, All pairs-shortest paths, singlesource shortest paths: general weights, optimal Binary search trees, $0 / 1$ knapsack, reliability Design, The traveling salesperson problem, matrix chain multiplication.

UNIT IV

Backtracking: The General Method, The 8-Queens problem, sum of subsets, Graph coloring, Hamiltonian cycles, knapsack problem.
Branch and Bound: FIFO Branch-and-Bound, LC Branch-and-Bound, 0/1 Knapsack problem, Traveling salesperson problem.

UNIT V

NP-Hard and NP-Complete problems: Basic concepts, Cook's Theorem.
String Matching: Introduction, String Matching-Meaning and Application, NaÏve String Matching Algorithm, Rabin-Karp Algorithm, Knuth-Morris-Pratt Automata, Tries, Suffix Tree.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY: KAKINADA

KAKINADA - 533 003, Andhra Pradesh, India

DEPARTMENT OF COMPUTER SCIENCE \& ENGINEERING

Text Books:

1) Ellis Horowitz, Sartaj Sahni, Sanguthevar Rajasekaran, " Fundamentals of Computer Algorithms", $2^{\text {nd }}$ Edition, Universities Press.
2) Harsh Bhasin, " Algorithms Design \& Analysis", Oxford University Press.

Reference Books:

1) Horowitz E. Sahani S: "Fundamentals of Computer Algorithms", $2^{\text {nd }}$ Edition, Galgotia Piblications, 2008.
2) S. Sridhar, "Design and Analysis of Algorithms", Oxford University Press.

e-Resources:

1) http://nptel.ac.in/courses/106101060/

UNIT - I

ALGORITHM

Informal Definition:

An Algorithm is any well-defined computational procedure that takes some value or set of values as Input and produces a set of values or some value as output. Thus algorithm is a sequence of computational steps that transforms the i / p into the o / p.

Formal Definition:

An Algorithm is a finite set of instructions that, if followed, accomplishes a particular task.
All algorithms should satisfy the following criteria.

1. INPUT \rightarrow Zero or more quantities are externally supplied.
2. OUTPUT \rightarrow At least one quantity is produced.
3. DEFINITENESS \rightarrow Each instruction is clear and unambiguous.
4. FINITENESS \rightarrow If we trace out the instructions of an algorithm, then for all cases, the algorithm terminates after a finite number of steps.
5. EFFECTIVENESS \rightarrow Every instruction must very basic so that it can be carried out, in principle, by a person using only pencil \& paper.

Issues or study of Algorithm:

- How to device or design an algorithm \rightarrow creating and algorithm.
- How to express an algorithm \rightarrow definiteness.
- How to analysis an algorithm \rightarrow time and space complexity.
- How to validate an algorithm \rightarrow fitness.
- Testing the algorithm \rightarrow checking for error.

The study of Algorithms includes many important and active areas of research.
There are four distinct areas of study one can identify

1. How to device algorithms-

Creating an algorithm is an art which many never fully automated. A major goal is to study various design techniques that have proven to be useful. By mastering
these design strategies, it will become easier for you to device new and useful algorithms. some of techniques may already be familiar, and some have been found to be useful. Dynamic programming is one technique. Some of the techniques are especially useful in fields other than computer science such as operations research and electrical engineering.

2. How to validate algorithms:

Once an algorithm is devised, it is necessary to show that it computes the correct answer for all possible legal inputs. We refer to this process as algorithm validation. The algorithm need not as yet be expressed as a program. The purpose of validation is to assure us that this algorithm will work correctly independently. Once the validity of the method has been shown, a program can be written and a second phase begins. This phase is referred to as program proving or sometimes as program verification.
A proof of correctness requires that the solution be stated in two forms. One form is usually as a program which is annotated by a set of assertions about the input and output variables of the program. These assertions are often expressed in the predicate calculus. The second form is called a specification, and this may also be expressed in the predicate calculus. A complete proof of program correctness requires that each statement of a programming language be precisely defined and all basic operations be proved correct.

3. How to analyze algorithms:

As an algorithm is executed, it uses the computer's central processing unit (CPU) to perform operations and its memory to hold the program and data. Analysis of algorithms or performance analysis refers to the task of determining how much computing time and storage algorithms replace.we analyze the algorithm based on time and space complexity.The amount of time neede to run the
algorithm is called time complexity.The amount of memory neede to run the algorithm is called space complexity

4. How to test a program:

Testing a program consists of two phases

1. Debugging
2. Profiling

Debugging: It is the process of executing programs on sample data sets to determine whether faulty results occur and, if so to correct them. However, as E. Dijkstra has pointed out, "debugging can only point to the presence of errors, but not to the absence".

Profiling: Profiling or performance measurement is the process of executing a correct program on data sets and measuring the time and space it takes to compute the results.

Algorithm Specification:

Algorithm can be described in three ways.

1. Natural language like English:

When this way is choused care should be taken, we should ensure that each \& every statement is definite.

2. Graphic representation called flowchart:

This method will work well when the algorithm is small\& simple.

3. Pseudo-code Method:

This method describe algorithms as program, which resembles language like Pascal \& algol.

Pseudo-Code Conventions for expressing algorithms:

1. Comments begin with // and continue until the end of line.
2. Blocks are indicated with matching braces $\{$ and $\}$.
3. An identifier begins with a letter. The data types of variables are not explicitly declared.
4. Compound data types can be formed with records. Here is an example, Node. Record
```
{
        data type - 1 data-1;
```



```
            •
            •
        data type - n data - n;
        node * link;
    }
```

Here link is a pointer to the record type node. Individual data items of a record can be accessed with \rightarrow and period.
5. Assignment of values to variables is done using the assignment statement.
<Variable>:= <expression>;
6. There are two Boolean values TRUE and FALSE.
\rightarrow Logical Operators AND, OR, NOT
\rightarrow Relational Operators <, <=,>,>=, =, !=
7. The following looping statements are employed.

For, while and repeat-until
While Loop:
While < condition > do
\{
<statement-1>

```
.
    <statement-n>
}
```


For Loop:

For variable: $=$ value- 1 to value- 2 step step do
\{
<statement-1>
-
.
<statement-n>
\}
repeat-until:

```
repeat
        <statement-1>
            •
            •
            •
            <statement-n>
until<condition>
```

8. A conditional statement has the following forms.
\rightarrow If <condition> then <statement>
\rightarrow If <condition> then <statement-1>
Else <statement-1>

Case statement:

Case
\{
: <condition-1> : <statement-1>
-
-
-
: <condition-n> : <statement-n>

```
    : else : <statement-n+1>
}
```

9. Input and output are done using the instructions read \& write.
10.There is only one type of procedure:

Algorithm, the heading takes the form,
Algorithm Name (Parameter lists)

Examples:

\rightarrow algorithm for find max of two numbers

```
algorithm Max(A,n)
// A is an array of size n
{
Result := A[1];
for I:= 2 to n do
        if A[I] > Result then
            Result :=A[I];
        return Result;
    }
```

\rightarrow Algorithm for Selection Sort:
Algorithm selection sort (a,n)
// Sort the array a[1:n] into non-decreasing order.
\{
for $\mathrm{i}:=1$ to n do
\{
$\mathrm{j}:=\mathrm{i}$;
for $\mathrm{k}:=\mathrm{i}+1$ to n do
if $(\mathrm{a}[\mathrm{k}]<\mathrm{a}[\mathrm{j}])$ then $\mathrm{j}:=\mathrm{k}$;
$\mathrm{t}:=\mathrm{a}[\mathrm{i}]$;
$\mathrm{a}[\mathrm{i}]:=\mathrm{a}[\mathrm{j}]$;
$\mathrm{a}[\mathrm{j}]:=\mathrm{t}$;
\}
\}

Recursive Algorithms:

- A Recursive function is a function that is defined in terms of itself.
- Similarly, an algorithm is said to be recursive if the same algorithm is invoked in the body.
- An algorithm that calls itself is Direct Recursive.
- Algorithm 'A' is said to be Indirect Recursive if it calls another algorithm which in turns calls ' A '.
- The Recursive mechanism, are externally powerful, but even more importantly, many times they can express an otherwise complex process very clearly. Or these reasons we introduce recursion here.
- The following 2 examples show how to develop a recursive algorithms.
\rightarrow In the first, we consider the Towers of Hanoi problem, and in the second, we generate all possible permutations of a list of characters.

1. Towers of Hanoi:

Towers of Hanoi is a problem in which there will be some disks which of decreasing sizes and were stacked on the tower in decreasing order of size bottom to top. Besides this there are two other towers (B and C) in which one tower will be act as destination tower and other act as intermediate tower. In this problem we have to move the disks from source tower to the destination tower. The conditions included during this problem are:

1) Only one disk should be moved at a time.
2) No larger disks should be kept on the smaller disks.

Consider an example to explain more about towers of Hanoi:
Consider there are three towers A, B, C and there will be three disks present in tower A . Consider C as destination tower and B as intermediate tower. The steps involved during moving the disks from A to B are

Step 1: Move the smaller disk which is present at the top of the tower A to C.

Step 2: Then move the next smallest disk present at the top of the tower A to B.

Step 3: Now move the smallest disk present at tower C to tower B
Step 4: Now move the largest disk present at tower A to tower C
Step 5: Move the disk smallest disk present at the top of the tower B to tower A.

Step 6: Move the disk present at tower B to tower C.
Step 7: Move the smallest disk present at tower A to tower C
In this way disks are moved from source tower to destination tower.

ALGORITHM FOR TOWERS OF HANOI:

Algorithm Towersofhanoi (n, X ,Y, Z)
\{
if $(n>=1)$ then
\{
Towersofhanoi(n-1, X, Z, Y);
Write("move top disk from tower ", X , "to top of tower", Y);
Towersofhanoi (n-1, Z, Y, X);
\}
\}
TIME COMPLEXITY OF TOWERS OF HANOI:
The recursive relation is:

$$
\begin{aligned}
\mathrm{t}(\mathrm{n}) & =1 ; & & \text { if } \mathrm{n}=0 \\
& =2 \mathrm{t}(\mathrm{n}-1)+2 & & \text { if } \mathrm{n}>=1
\end{aligned}
$$

Solve the above recurrence relation then the time complexity of towers of Hanoi is $\mathrm{O}\left(2^{\wedge} \mathrm{n}\right)$

Performance Analysis:

1. Space Complexity:

The space complexity of an algorithm is the amount of memory it needs to run to compilation.

2. Time Complexity:

The time complexity of an algorithm is the amount of computer time it needs to run to compilation.

Space Complexity:

\rightarrow The Space needed by each of these algorithms is seen to be the sum of the following component.

1. A fixed part that is independent of the characteristics (eg:number,size)of the inputs and outputs.

The part typically includes the instruction space (ie. Space for the code), space for simple variable and fixed-size component variables (also called aggregate) space for constants, and so on.

1. A variable part that consists of the space needed by component variables whose size is dependent on the particular problem instance being solved, the space needed by referenced variables (to the extent that is depends on instance characteristics), and the recursion stack space.

- The space requirement $\mathrm{s}(\mathrm{p})$ of any algorithm p may therefore be written as,

$$
\mathbf{S}(\mathbf{P})=\mathbf{c}+\mathbf{S p}(\text { Instance characteristics })
$$

Where ' c ' is a constant.

Example 1:

Algorithm abc(a,b,c)
\{
return $a+b++* c+(a+b-c) /(a+b)+4.0$;
\}
In this algorithm $\mathrm{sp}=0$;let assume each variable occupies one word. Then the space occupied by above algorithm is $>=3$.
$\mathrm{S}(\mathrm{P})>=3$

Example 2:

```
Algorithm sum(a,n)
{
    s=0.0;
    for I=1 to n do
    s= s+a[I];
    return s;
}
```

In the above algoritm n, s and occupies one word each and array ' a ' occupies n number of words so $\mathrm{S}(\mathrm{P})>=\mathrm{n}+3$

Example 3:

ALGORITHM FOR SUM OF NUMBERS USING RECURSION:

```
Algorithm RSum (a, n)
    \{
        if \((\mathrm{n}<=0)\) then
            return 0.0;
        else
            return \(\operatorname{RSum}(\mathrm{a}, \mathrm{n}-1)+\mathrm{a}[\mathrm{n}]\);
    \}
```

The space complexity for above algorithm is:
In the above recursion algorithm the space need for the values of n , return address and pointer to array. The above recursive algorithm depth is ($n+1$). To each recursive call we require space for values of n, return address and pointer to array. So the total space occupied by the above algorithm is $\mathrm{S}(\mathrm{P})>=3(\mathrm{n}+1)$

Time Complexity:

The time $\mathrm{T}(\mathrm{p})$ taken by a program P is the sum of the compile time and the run time(execution time)
\rightarrow The compile time does not depend on the instance characteristics. Also we may assume that a compiled program will be run several times without recompilation. This rum time is denoted by tp(instance characteristics).
\rightarrow The number of steps any problem statemn t is assigned depends on the kind of statement.

For example, comments $\quad \rightarrow 0$ steps.
Assignment statements $\quad \rightarrow 1$ steps.
[Which does not involve any calls to other algorithms]
Interactive statement such as for, while \& repeat-until \rightarrow Control part of the statement.
->We can determine the number of steps needed by a program to solve a particular problem instance in Two ways.

1. We introduce a variable, count into the program statement to increment count with initial value 0 .Statement to increment count by the appropriate amount are introduced into the program.

This is done so that each time a statement in the original program is executes count is incremented by the step count of that statement.

Example1:

Algorithm:

```
Algorithm sum(a,n)
{
    s= 0.0;
    count = count+1;
    for I=1 to n do
    {
    count =count+1;
    s=s+a[I];
    count=count+1;
    }
count=count+1;
count=count+1;
return s;
}
```

\rightarrow If the count is zero to start with, then it will be $2 n+3$ on termination. So each invocation of sum execute a total of $2 n+3$ steps.

Example 2:

```
Algorithm RSum(a,n)
{
    count:=count+1;// For the if conditional
    if(n<=0)then
{
    count:=count+1; //For the return
    return 0.0;
}
else
{
    count:=count+1;//For the addition,function invocation and return
    return RSum(a,n-1)+a[n];
}
}
```


Example3:

ALGORITHM FOR MATRIX ADDITION

```
Algorithm Add(a,b,c,m,n)
{
for i:=1 to m do
{
    count:=count+1; //For 'for i'
    for j:=1 to n do
{
    count:=count+1; //For 'for j'
    c[i,j]=a[i,j]+b[i,j];
    count:=count+1; //For the assignment
}
```

count:=count+1; //For loop initialization and last time of 'for j'
count:=count+1; //For loop initialization and last time of 'for i '
If the count is zero to start with, then it will be $2 \mathrm{mn}+2 \mathrm{~m}+1$ on termination. So each invocation of sum execute a total of $2 m n+2 m+1$ steps
2. The second method to determine the step count of an algorithm is to build a table in which we list the total number of steps contributes by each statement.
\rightarrow First determine the number of steps per execution (s/e) of the statement and the
total number of times (ie., frequency) each statement is executed.
\rightarrow By combining these two quantities, the total contribution of all statements, the step count for the entire algorithm is obtained.

Example 1:

Statement	S/e	Frequency	Total
1. Algorithm Sum(a,n)	0	-	0
2.\{	0	-	0
3. S=0.0;	1	1	1
4. for I=1 to n do	1	$\mathrm{n}+1$	$\mathrm{n}+1$
5. $\mathrm{s}=\mathrm{s}+\mathrm{a}[\mathrm{I}] ;$	1	n	n
6. return $\mathrm{s} ;$	1	1	1
7. $\}$	0	-	0
Total			

step table for algorithm sum

Example 2:

		frequency	total steps	
Statements	s/e	$\mathrm{n}=0$	$\mathrm{n}>0$	$\mathrm{n}=0$
1 algorithm Rsum (a, n)	0	-	-0	$\mathrm{n}>0$

			0
2 \{			
3 if $(\mathrm{n}<=0)$ then	1	1	1
		1	1
4 return 0.0;	1	1	1
		0	0
5 else return			
$6 \operatorname{Rsum}(\mathrm{a}, \mathrm{n}-1)+\mathrm{a}[\mathrm{n}]$;	$1+x$	0	0
		1	$1+\mathrm{x}$
7 \}		0	0
			0
Total			2
			$2+x$

step table for algorithm recursive sum

Example 3:

Statements	s/e	frequency	total steps
$\begin{array}{ll} 1 & \text { Algorithm } \\ \text { Add(a,b,c,m,n) } \end{array}$	0	-	0
2 \{	0	-	0
3 for $\mathrm{i}:=1$ to m do		m+1	$\mathrm{m}+1$
4 for $\mathrm{j}:=1$ to n do		$\mathrm{m}(\mathrm{n}+1)$	$m n+m$
$\begin{aligned} & 5 \\ & \mathrm{c}[\mathrm{I}, \mathrm{j}]:=\mathrm{a}[\mathrm{I}, \mathrm{j}]+\mathrm{b}[\mathrm{I}, \mathrm{j}] ; \end{aligned}$		mn	mn
6 \}	0)	0
Total			$2 \mathrm{mn}+2 \mathrm{~m}+1$

step table for matrix addition

Example 4:

Algorithm to find nth fibnocci number
Algorithm Fibonacci(n)
//Compute the nth Fibonacci number
\{
if $(\mathrm{n}<=1)$ then
write (n);
else
\{
fnm2:=0;
fnm1:=1;
for $\mathrm{i}:=2$ to n do
\{
fn:=fnm1+fnm2;
fnm:=fnm1;
fnm1:=fn;
\}
write(fn);
\}

Asymptotic Notations:

The best algorithm can be measured by the efficiency of that algorithm.The efficiency of an algorithm is measured by computing time complexity.The asymptotic notations are used to find the time complexity of an algorithm.

Asymptotic notations gives fastest possible,slowest possible time and average time of the algorithm.

The basic asymptotic notations are $\operatorname{Big}-\mathrm{oh}(\mathrm{O}), \operatorname{Omega}(\Omega)$ and theta (Θ).

1:BIG-OH(O) NOTATION:

(i)It is denoted by ' O '.
(ii)It is used to find the upper bound time of an algorithm, that means the maximum time taken by the algorithm.
Definition : Let $\mathrm{f}(\mathrm{n}), \mathrm{g}(\mathrm{n})$ are two non-negative functions. If there exists two positive constants $\mathrm{c}, \mathrm{n} 0$. such that $\mathrm{c}>0$ and for all $\mathrm{n}>=\mathrm{n} 0$ if $\mathrm{f}(\mathrm{n})<=\mathrm{c}^{*} \mathrm{~g}(\mathrm{n})$ then we say that $\mathrm{f}(\mathrm{n})=\mathrm{O}(\mathrm{g}(\mathrm{n}))$

The Graph for Big-oh (O) notation:

Figure 1
example : consider $\mathrm{f}(\mathrm{n})=2 \mathrm{n}+3$ and $\mathrm{g}(\mathrm{n})=\mathrm{n}^{\wedge} 2$
Sol: $\mathrm{f}(\mathrm{n})<=\mathrm{c} * \mathrm{~g}(\mathrm{n})$
let us assuming as $c=1$,
then $\mathrm{f}(\mathrm{n})<=\mathrm{g}(\mathrm{n})$
if $\mathrm{n}=1$,
$2 \mathrm{n}+3<=\mathrm{n}^{\wedge} 2=2(1)+3<=1 \wedge 2=>5<=1$ (false)
If $\mathrm{n}=2$,
$2 n+3<=n^{\wedge} 2=2(2)+3<=2^{\wedge} 2=7<=4$ (false)
if $\mathrm{n}=3$,
$2 \mathrm{n}+3<=\mathrm{n}^{\wedge} 2=2(3)+3<=3 \wedge 2=9<=9 \quad$ (true)
if $\mathrm{n}=4$,
$2 n+3<=n^{\wedge} 2=>2(4)+3<=4 \wedge 2=11<=6$ (true)
if $\mathrm{n}=5$,

$$
2 n+3<=n^{\wedge} 2=2(5)+3<=5^{\wedge} 2=13<=25 \text { (true) }
$$

$$
\text { If } n=6,2 n+3<=n^{\wedge} 2=2(6)+3<=6^{\wedge} 2=15<=36 \text { (true) }
$$

.$: n>=3, f(n)=O\left(n^{\wedge} 2\right)$ i.e, $f(n)=O(g(n))$

2:OMEGA (Ω) NOTATION:

(i)It is denoted by ' Ω '.
(ii)It is used to find the lower bound time of an algorithm, that means the minimum time taken by an algorithm.

Definition : Let $\mathrm{f}(\mathrm{n}), \mathrm{g}(\mathrm{n})$ are two non-negative functions. If there exists two positive constants $c, n 0$.such that $c>0$ and for all $n>=n 0$.if $f(n)>=c * g(n)$ then we say that $\mathrm{f}(\mathrm{n})=\Omega(\mathrm{g}(\mathrm{n}))$

The graph for Omega notation:

Example : consider $\mathrm{f}(\mathrm{n})=2 \mathrm{n}+5, \mathrm{~g}(\mathrm{n})=2 \mathrm{n}$
Sol : Let us assume as $\mathrm{c}=1$

$$
\text { If } n=1: 2 n+5>=2 n=>2(1)+5>=2(1)=>7>=2 \text { (true) }
$$

$$
\begin{aligned}
& \text { if } n=2: 2 n+3>=2 n=>2(2)+5>=2(2)=>9>=4 \quad \text { (true) } \\
& \text { if } n=3: 2 n+3>=2 n=>2(3)+5>=2(3)=>11>=6 \quad \text { (true) } \\
& \text { for all } .: n>=1, f(n)=\Omega(n) \text { i.e }, f(n)=\Omega(g(n))
\end{aligned}
$$

3:THETA ($\boldsymbol{\Theta}$) NOTATION:

(i)It is denoted by the symbol called as (Θ).
(ii)It is used to find the time in-between lower bound time and upper bound time of an algorithm.
Definition : Let $f(n), g(n)$ are two non-negative functions. If there exists positive constants $\mathrm{c} 1, \mathrm{c} 2, \mathrm{n} 0$.such that $\mathrm{c} 1>0, \mathrm{c} 2>0$ and for all $\mathrm{n}>=\mathrm{n} 0$.if $\mathrm{c} 1 * \mathrm{~g}(\mathrm{n})<=\mathrm{f}(\mathrm{n})<=\mathrm{c} 2 * \mathrm{~g}(\mathrm{n})$ then we say that $\mathrm{f}(\mathrm{n})=\Theta(\mathrm{g}(\mathrm{n}))$

Example : consider $\mathrm{f}(\mathrm{n})=2 \mathrm{n}+5, \mathrm{~g}(\mathrm{n})=\mathrm{n}$
Sol :c1*g(n)<=f(n)<=c2*g(n)
let us assuming as $\mathrm{c} 1=3$ then $\mathrm{c} 1 * \mathrm{~g}(\mathrm{n})=3 \mathrm{n}$
if $\mathrm{n}=1$,
$3 n<=2 n+5=>3(1)<=2(1)+5=>3<=7$ (true)
If $\mathrm{n}=2$,
$3 n<=2 n+5=>3(2)<=2(2)+5=>6<=9$ (true)

$$
\begin{aligned}
& \text { If } n=3, \\
& 3 n<=2 n+5=>3(3)<=2(3)+5=>9<=11 \quad(\text { true }) \\
& \mathrm{c} 2=4 \mathrm{c} 2 * \mathrm{~g}(\mathrm{n})=4 \mathrm{n} \\
& \text { if } \mathrm{n}=1, \\
& 2 \mathrm{n}+5<=4 \mathrm{n}=>2(1)+5<=4(1)=>7<=4 \\
& \text { If } \mathrm{n}=2, \\
& 2 \mathrm{n}+5<=4 \mathrm{n}=>2(2)+5<=4(2)=>9<=8 \\
& \text { If } \mathrm{n}=3, \\
& 2 \mathrm{n}+5<=4 \mathrm{n}=>2(3)+5<=4(3)=>11<=12 \quad(\text { true }) \\
& \text { If } \mathrm{n}=4, \\
& 2 \mathrm{n}+5<=4 \mathrm{n}=>2(4)+5<=4(4)=>13<=16 \quad(\text { true }) \\
& \text { for all } .: \mathrm{n}>=3 \mathrm{f}(\mathrm{n})=\Theta(\mathrm{n}) \quad \mathrm{f}(\mathrm{n})=\Theta(\mathrm{g}(\mathrm{n}))
\end{aligned}
$$

4:LITTLE-OH (O) NOTATION:

Definition : Let $\mathrm{f}(\mathrm{n}), \mathrm{g}(\mathrm{n})$ are two non-negative functions
if $\lim _{n \rightarrow \infty}[f(n) / g(n)]=0$ then we say that $\mathrm{f}(\mathrm{n})=\mathrm{o}(\mathrm{g}(\mathrm{n}))$
example : consider $\mathrm{f}(\mathrm{n})=2 \mathrm{n}+3, \mathrm{~g}(\mathrm{n})=\mathrm{n}^{\wedge} 2$
sol : let us

$$
\begin{aligned}
& \lim _{\mathrm{n}->^{\infty}} \mathrm{f}(\mathrm{n}) / \mathrm{g}(\mathrm{n})=0 \\
& \lim _{\mathrm{n}->^{\infty}}(2 \mathrm{n}+3) /\left(\mathrm{n}^{\wedge} 2\right) \\
& =\lim _{\mathrm{n}->^{\infty}} \mathrm{n}(2+(3 / \mathrm{n})) /\left(\mathrm{n}^{\wedge} 2\right) \\
& =\lim _{\mathrm{n}->^{\infty}}(2+(3 / \mathrm{n})) / \mathrm{n} \\
& =2 /^{\infty} \\
& =0 \\
& \therefore \mathrm{f}(\mathrm{n})=\mathrm{o}\left(\mathrm{n}^{\wedge} 2\right) .
\end{aligned}
$$

5:LITTLE OMEGA NOTATION:

Definition: Let $f(n)$ and $g(n)$ are two non-negative functions.
if $\lim g(n) / f(n)=0$ then we say that $f(n)=\omega(g(n))$

$$
\mathrm{n}->^{\infty}
$$

example : consider $\mathrm{f}(\mathrm{n})=\mathrm{n}^{\wedge} 2, \mathrm{~g}(\mathrm{n})=2 \mathrm{n}+5$
sol : let us

$$
\begin{aligned}
& \lim \mathrm{g}(\mathrm{n}) / \mathrm{f}(\mathrm{n})=0 \\
& \text { (} \mathrm{n}->^{\infty} \text {) } \\
& =\lim (2 \mathrm{n}+5) /\left(\mathrm{n}^{\wedge} 2\right) \\
& \text { (} \mathrm{n}->^{\infty} \text {) } \\
& =\lim n(2+(5 / n)) /\left(n^{\wedge} 2\right) \\
& \text { (} \mathrm{n} \text { > }{ }^{\infty} \text {) } \\
& =\lim (2+(5 / n)) / \mathrm{n}=2 /^{\infty}=0 \\
& \text { (} \mathrm{n}->^{\infty} \text {) } \\
& .: f(n)=\omega(n) \text {. }
\end{aligned}
$$

Amortized analysis:

Amortized analysis means finding average running time per operation over a worst case sequence of operations.
Suppose a sequence I1,I2,D1,I3,I4,I5,I6,D2,I7 of insert and delete operations is performed on a set.

Assume that the actual cost of each of the seven inserts is one and for delete operations D1 and D2 have an actual cost of 8 and 10 so the total cost of sequence of operations is 25 .

In amortized scheme we charge some of the actual cost of an operation to other operations. This reduce the charge cost of some operations and increases the cost of other operations. The amortized cost of an operation is the total cost charge to it.

The only requirement is that the some of the amortized complexities of all operations in any sequence of operations be greater than or equal to their some of actual complexities i.e.,
$\sum_{1 \leq i \leq n} \operatorname{amortized}(i) \geq \sum_{1 \leq i \leq n} \operatorname{actual}(i) \longrightarrow$
Where amortized(i) and actual(i) denote the amortized and actual complexities of the $\mathrm{i}^{\text {th }}$ operations in a sequence on n operations.
To define the potential function $\mathrm{p}(\mathrm{i})$ as:
$\mathrm{p}(\mathrm{i})=\operatorname{amortized}(\mathrm{i})-\operatorname{actual}(\mathrm{i})+\mathrm{p}(\mathrm{i}-1) \quad \rightarrow(2)$
If we sum equation (2) for $1 \leq i \leq n$ we get
$\sum_{1 \leq i \leq n} p(i)=\sum_{1 \leq i \leq n}(\operatorname{amortized}(i)-\operatorname{actual}(i)+p(i-1))$
$\sum_{1 \leq i \leq n} p(i)-\sum_{1 \leq i \leq n} p(i-1)=\sum_{1 \leq i \leq n}(\operatorname{amortized}(i)-\operatorname{actual}(i))$
$\mathrm{P}(\mathrm{n})-\mathrm{p}(0)=\sum_{1 \leq i \leq n}(\operatorname{amortized}(i)-\operatorname{actual}(i))$
From equation (1) we say that
P (n)-p $(0) \geq 0 \longrightarrow$ (3)
Under assumption $\mathrm{p}(0)=0, \mathrm{p}(\mathrm{i})$ is the amount by which the first ' i ' operations have been over charged (i.e., they have been charged more than the actual cost).

The methods to find amortized cost for operations are:

1. Aggregate method.
2. Accounting method.
3. Potential method.

1. Aggregate method:

The amortized cost of each operation is set equal to Upper Bound On Sum Of Actual Costs(n)/n.

2. Accounting method:

In this method we assign amortized cost to the operations (possibly by guessing what assignment will work),compute the $\mathrm{p}(\mathrm{i})$ using equation(2) and show that $\mathrm{p}(\mathrm{n})-\mathrm{p}(0)>=0$.

3.Potential method:

Here we start with potential function that satisfies equation(3) and compute amortized complexities using equation(2).

Example:

Let assume we pay $\$ 50$ for each month other than March, June, September, and December $\$ 100$ for every June, September. calculate cost by using aggregate, accounting and potential method.

Month	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$	$\mathbf{1 5}$	$\mathbf{1 6}$
Actual cost:	$\mathbf{5 0}$	$\mathbf{5 0}$	$\mathbf{1 0 0}$	$\mathbf{5 0}$	$\mathbf{5 0}$	$\mathbf{1 0 0}$	$\mathbf{5 0}$	$\mathbf{5 0}$	$\mathbf{1 0 0}$	$\mathbf{5 0}$	$\mathbf{5 0}$	$\mathbf{2 0 0}$	$\mathbf{5 0}$	$\mathbf{5 0}$	$\mathbf{1 0 0}$	$\mathbf{5 0}$
Amortize d cost:	$\mathbf{7 5}$															
$\mathbf{P (~) : ~}$	$\mathbf{2 5}$	$\mathbf{5 0}$	$\mathbf{2 5}$	$\mathbf{5 0}$	$\mathbf{7 5}$	$\mathbf{5 0}$	$\mathbf{7 5}$	$\mathbf{1 0 0}$	$\mathbf{7 5}$	$\mathbf{1 0 0}$	$\mathbf{1 2 5}$	$\mathbf{0}$	$\mathbf{2 5}$	$\mathbf{5 0}$	$\mathbf{2 5}$	$\mathbf{5 0}$

Aggregate Method:
$=200 \times \mathrm{L}_{\mathrm{n}} / 12 \mathrm{~J}+100\left(\mathrm{~L}_{\mathrm{n} / 3} \mathrm{\lrcorner}-\mathrm{L}_{\mathrm{n}} / 12 \mathrm{~J}\right)+50\left(\mathrm{n}-\mathrm{L}_{\mathrm{n} / 3} \mathrm{\lrcorner}\right)$
$=100 \times \mathrm{L}_{\mathrm{n} / 12}{ }^{\lrcorner}+50 \mathrm{~L}_{\mathrm{n} / 3} \mathrm{~J}^{\mathrm{L}}+50 \mathrm{n}$
$\leq 100 \times(\mathrm{n} / 12)+50 \times(\mathrm{n} / 3)+50 \times \mathrm{n}$
$=50 \mathrm{n}((1 / 6)+(1 / 3)+(1))$
$=50 \mathrm{n}((1+2+6) / 6)$
$=50 \mathrm{n}$ (9/6)
$=75 n$.
In the above problem the actual cost for ' n ' months does not exceed 200n from the aggregate method the amortized cost for ' n ' months does not exceed $\$ 75$. The amortized cost for each month is set to $\$ 75$.
Let assume $\mathrm{p}(0)=0$ the potential for each and every month.

Accounting method:

From the above table we see that using any cost less than $\$ 75$ will result in $\mathrm{p}(\mathrm{n})-\mathrm{p}(0) \leq 0$.
The amortized cost must be ≥ 75.
If the amortized cost ≤ 75 then only the condition $p(n)-p(0)<=0$.

Potential method:

To the given problem we start with the potential function as:

$$
\begin{array}{ll}
P(n)=0 & n \bmod 12=0 \\
P(n)=25 & n \bmod 12=1 \text { or } 3
\end{array}
$$

$$
\begin{array}{ll}
\mathrm{P}(\mathrm{n})=50 & \mathrm{n} \bmod 12=4,6,2 \\
\mathrm{P}(\mathrm{n})=75 & \mathrm{n} \bmod 12=5,7,9 \\
\mathrm{P}(\mathrm{n})=100 & \mathrm{n} \bmod 12=8,10 \\
\mathrm{P}(\mathrm{n})=125 & \mathrm{n} \bmod 12=4
\end{array}
$$

From the above potential function the amortized cost for operation is evaluated for $\operatorname{amortized}(i)=p(i)-p(i-1)+\operatorname{actual}(i)$.

Probabilistic analysis:

In probabilistic analysis we analyze the algorithm for finding efficiency of the algorithm. The efficiency of algorithm is also depend upon distribution of inputs.In this we analyze algorithm by the concept of probability.

For example the company wants to recruiting k persons from the n persons.To do this the company assigns ranking to all n persons depend upon their performance.The rankings of n persons from r_{1} to r_{n}.To n persons we get n ! permutations out of n ! permutations the company selects any one combination that is from r_{1} to r_{k}

1.4 RANDOMIZED ALGORITHMS

1.4.1 Basics of Probability Theory

Probability theory has the goal of characterizing the outcomes of natural or conceptual "experiments." Examples of such experiments include tossing a coin ten times, rolling a die three times, playing a lottery, gambling, picking a ball from an urn containing white and red balls, and so on.

Each possible outcome of an experiment is called a sample point and the set of all possible outcomes is known as the sample space S. In this text we assume that S is finite (such a sample space is called a discrete sample space). An event E is a subset of the sample space S. If the sample space consists of n sample points, then there are 2^{n} possible events.

Example 1.19 [Tossing three coins] When a coin is tossed, there are two possible outcomes: heads (H) and tails (T). Consider the experiment of throwing three coins. There are eight possible outcomes: $H H H, H H T$, $H T H, H T T, T H H, T H T, T T H$, and $T T T$. Each such outcome is a sample point. The sets $\{H H T, H T T, T T T\},\{H H H, T T T\}$, and $\}$ are three possible events. The third event has no sample points and is the empty set. For this experiment there are 2^{8} possible events.

Definition 1.9 [Probability] The probability of an event E is defined to be $\frac{|E|}{|S|}$, where S is the sample space.

Example 1.20 [Tossing three coins] The probability of the event $\{H H T$, $H T T, T T T\}$ is $\frac{3}{8}$. The probability of the event $\{H H H, T T T\}$ is $\frac{2}{8}$ and that of the event $\}$ is zero.

Note that the probability of S, the sample space, is 1 .

Example 1.21 [Rolling two dice] Let us look at the experiment of rolling two (six-faced) dice. There are 36 possible outcomes some of which are $(1,1),(1,2),(1,3), \ldots$ What is the probability that the sum of the two faces is 10 ? The event that the sum is 10 consists of the following sample points: $(1,9),(2,8),(3,7),(4,6),(5,5),(6,4),(7,3),(8,2)$, and $(9,1)$. Therefore, the probability of this event is $\frac{9}{36}=\frac{1}{4}$.

Definition 1.10 [Mutual exclusion] Two events E_{1} and E_{2} are said to be mutually exclusive if they do not have any common sample points, that is, if $E_{1} \cap E_{2}=\Phi$.

Example 1.22 [Tossing three coins] When we toss three coins, let E_{1} be the event that there are two H 's and let E_{2} be the event that there are at least two T 's. These two events are mutually exclusive since there are no common sample points. On the other hand, if E_{2}^{\prime} is defined to be the event that there is at least one T, then E_{1} and E_{2}^{\prime} will not be mutually exclusive since they will have $T H H, H T H$, and $H H T$ as common sample points.

The probability of event E is denoted as Prob. $[E]$. The complement of E, denoted \bar{E}, is defined to be $S-E$. If E_{1} and E_{2} are two events, the probability of E_{1} or E_{2} or both happening is denoted as $\operatorname{Prob} .\left[E_{1} \cup E_{2}\right]$. The probability of both E_{1} and E_{2} occurring at the same time is denoted as $\operatorname{Prob} .\left[E_{1} \cap E_{2}\right]$. The corresponding event is $E_{1} \cap E_{2}$.

Theorem 1.5

$$
\begin{aligned}
\text { 1. Prob. }[\bar{E}] & =1-\operatorname{Prob} .[E] . \\
\text { 2. Prob. }\left[E_{1} \cup E_{2}\right] & =\text { Prob. }\left[E_{1}\right]+\operatorname{Prob} .\left[E_{2}\right]-\operatorname{Prob} .\left[E_{1} \cap E_{2}\right] \\
& \leq \operatorname{Prob} .\left[E_{1}\right]+\operatorname{Prob} .\left[E_{2}\right]
\end{aligned}
$$

Definition 1.11 [Conditional probability] Let E_{1} and E_{2} be any two events of an experiment. The conditional probability of E_{1} given E_{2}, denoted by Prob. $\left[E_{1} \mid E_{2}\right]$, is defined as $\frac{\operatorname{Prob} .\left[E_{1} \cap E_{2}\right]}{\text { Prob. }\left[E_{2}\right]}$.

Example 1.23 [Tossing four coins] Consider the experiment of tossing four coins. Let E_{1} be the event that the number of H 's is even and let E_{2} be the event that there is at least one H. Then, E_{2} is the complement of the event that there are no H^{\prime} 's. The probability of no H^{\prime} 's is $\frac{1}{16}$. Therefore, $\operatorname{Prob} .\left[E_{2}\right]=1-\frac{1}{16}=\frac{15}{16} . \quad \operatorname{Prob} .\left[E_{1} \cap E_{2}\right]$ is $\frac{7}{16}$ since the event $E_{1} \cap E_{2}$ has the seven sample points $H H H H, H H T T, H T H T, H T T H, T H H T$, THTH, and TTHH. Thus, Prob. $\left[E_{1} \mid E_{2}\right]$ is $\frac{7 / 16}{15 / 16}=\frac{7}{15}$.

Definition 1.12 [Independence] Two events E_{1} and E_{2} are said to be independent if Prob. $\left[E_{1} \cap E_{2}\right]=\operatorname{Prob} .\left[E_{1}\right] * \operatorname{Prob} .\left[E_{2}\right]$.

Example 1.24 [Rolling a die twice] Intuitively, we say two events E_{1} and E_{2} are independent if the probability of one event happening is in no way affected by the occurrence of the other event. In other words, if Prob. $\left[E_{1} \mid E_{2}\right]=$ $\operatorname{Prob} .\left[E_{1}\right]$, these two events are independent. Suppose we roll a die twice. What is the probability that the outcome of the second roll is 5 (call this event E_{1}), given that the outcome of the first roll is 4 (call this event E_{2})? The answer is $\frac{1}{6}$ no matter what the outcome of the first roll is. In this case E_{1} and E_{2} are independent. Therefore, $\operatorname{Prob} .\left[E_{1} \cap E_{2}\right]=\frac{1}{6} * \frac{1}{6}=\frac{1}{36}$.

Example 1.25 [Flipping a coin 100 times] If a coin is flipped 100 times what is the probability that all of the outcomes are tails? The probability that the first outcome is T is $\frac{1}{2}$. Since the outcome of the second flip is independent of the outcome of the first flip, the probability that the first two outcomes are T 's can be obtained by multiplying the corresponding probabilities to get $\frac{1}{4}$. Extending the argument to all 100 outcomes, we conclude that the probability of obtaining $100 T$'s is $\left(\frac{1}{2}\right)^{100}$. In this case we say the outcomes of the 100 coin flips are mutually independent.

Definition 1.13 [Random variable] Let S be the sample space of an experiment. A random variable on S is a function that maps the elements of S to the set of real numbers. For any sample point $s \in S, X(s)$ denotes the image of s under this mapping. If the range of X, that is, the set of values X can take, is finite, we say X is discrete.

Let the range of a discrete random variable X be $\left\{r_{1}, r_{2}, \ldots, r_{m}\right\}$. Then, Prob. $\left[X=r_{i}\right]$, for any i, is defined to be the the number of sample points whose innage is r_{i} divided by the number of sample points in S. In this text we are concerned mostly with discrete random variables.

Example 1.26 We flip a coin four times. The sample space consists of 2^{4} sample points. We can define a random variable X on S as the number of heads in the coin flips. For this random variable, then, $X(H T H H)=3$, $X(H H H H)=4$, and so on. The possible values that X can take are $0,1,2,3$, and 4. Thus X is discrete. Prob. $[X=0]$ is $\frac{1}{16}$, since the only sample point whose image is 0 is TTTT. $\operatorname{Prob} .[X=1]$ is $\frac{4}{16}$, since the four sample points $H T T^{\prime} \Gamma, T H T T, T T H T$, and $T T T H$ have 1 as their image.

Definition 1.14 [Expected value] If the sample space of an experiment is $S=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$, the expected value or the mean of any random variable X is defined to be $\sum_{i=1}^{n}$ Prob. $\left[s_{i}\right] * X\left(s_{i}\right)=\frac{1}{n} \sum_{i=1}^{n} X\left(s_{i}\right)$.

Example 1.27 [Coin tosses] The sample space corresponding to the experiment of tossing three coins is $S=\{H H H, H H T, H T H, H T T, T H H$, $T H T, T T H, T T T\}$. If X is the number of heads in the coin flips, then the expected value of X is $\frac{1}{8}(3+2+2+1+2+1+1+0)=1.5$.

Definition 1.15 [Probability distribution] Let X be a discrete random variable defined over the sample space S. Let $\left\{r_{1}, r_{2}, \ldots, r_{m}\right\}$ be its range. Then, the probability distribution of X is the sequence $\operatorname{Prob} \cdot\left[\begin{array}{ll}X=r_{1}\end{array}\right]$, $\operatorname{Prob} .\left[X=r_{2}\right], \ldots, \operatorname{Prob} .\left[X=r_{m}\right]$. Notice that $\sum_{i=1}^{m} \operatorname{Prob} .\left[X=r_{i}\right]=1$.

Example 1.28 [Coin tosses] If a coin is flipped three times and X is the number of heads, then X can take on four values, $0,1,2$, and 3 . The probability distribution of X is given by $\operatorname{Prob} .[X=0]=\frac{1}{8}, \operatorname{Prob} .[X=1]=$ $\frac{3}{8}, \operatorname{Prob} .[X=2]=\frac{3}{8}$, and $\operatorname{Prob} .[X=3]=\frac{1}{8}$.

Definition 1.16 [Binomial distribution] A Bernoulli trial is an experiment that has two possible outcomes, namely, success and failure. The probability of success is p. Consider the experiment of conducting the Bernoulli trial n times. This experiment has a sample space S with 2^{n} sample points. Let X be a random variable on S defined to be the numbers of successes in the n trials. The variable X is said to have a binomial distribution with parameters (n, p). The expected value of X is $n p$. Also,

$$
\operatorname{Prob} .[X=i]=\binom{n}{i} p^{i}(1-p)^{n-i}
$$

In several applications, it is necessary to estimate the probabilities at the tail ends of probability distributions. One such estimate is provided by the following lemma.

Lemma 1.1 [Markov's inequality] If X is any nonnegative random variable whose mean is μ, then

$$
\operatorname{Prob} .[X \geq x] \leq \frac{\mu}{x}
$$

Example 1.29 Let μ be the mean of a random variable X. We can use Markov's lemma (also called Markov's inequality) to make the following statement: "The probability that the value of X exceeds 2μ is $\leq \frac{1}{2}$." Consider the example: if we toss a coin 1000 times, what is the probability that the number of heads is ≥ 600 ? If X is the number of heads in 1000 tosses, then, the expected value of $X, E[X]$, is 500 . Applying Markov's inequality with $x=600$ and $\mu=500$, we infer that $P[X \geq 600] \leq \frac{5}{6}$.

Though Markov's inequality can be applied to any nonnegative random variable, it is rather weak. We can obtain tighter bounds for a number of important distributions including the binomial distribution. These bounds are due to Chernoff. Chernoff bounds as applied to the binomial distribution are employed in this text to analyze randomized algorithms.

Lemma 1.2 [Chernoff bounds] If X is a binomial with parameters (n, p), and $m>n p$ is an integer, then

$$
\begin{gather*}
\operatorname{Prob.}(X \geq m) \leq\left(\frac{n p}{m}\right)^{m} e^{(m-n p)} . \tag{1.1}\\
\text { Also, } \operatorname{Prob} .(X \leq\lfloor(1-\epsilon) p n\rfloor) \leq e^{\left(-\epsilon^{2} n p / 2\right)} \tag{1.2}\\
\text { and } \operatorname{Prob} .(X \geq\lceil(1+\epsilon) n p\rceil) \leq e^{\left(-\epsilon^{2} n p / 3\right)} \tag{1.3}
\end{gather*}
$$

for all $0<\epsilon<1$.
Example 1.30 Consider the experiment of tossing a coin 1000 times. We want to determine the probability that the number X of heads is ≥ 600. We can use Equation 1.3 to estimate this probability. The value for ϵ here is 0.2 . Also, $n=1000$ and $p=\frac{1}{2}$. Equation 1.3 now becomes

$$
P[X \geq 600] \leq e^{\left[-(0.2)^{2}(500 / 3)\right]}=e^{-20 / 3} \leq 0.001273
$$

This estimate is more precise than that given by Markov's inequality.

1.4.2 Randomized Algorithms: An Informal Description

A randomized algorithm is one that makes use of a randomizer (such as a random number generator). Some of the decisions made in the algorithm depend on the output of the randomizer. Since the output of any randomizer might differ in an unpredictable way from run to run, the output of a randomized algorithm could also differ from run to run for the same input. The execution time of a randomized algorithm could also vary from run to run for the same input.

Randomized algorithms can be categorized into two classes: The first is algorithms that always produce the same (correct) output for the same input. These are called Las Vegas algorithms. The execution time of a Las Vegas algorithm depends on the output of the randomizer. If we are lucky, the algorithm might terminate fast, and if not, it might run for a longer period of time. In general the execution time of a Las Vegas algorithm is characterized as a random variable (see Section 1.4.1 for a definition). The second is algorithms whose outputs might differ from run to run (for the same input). These are called Monte Carlo algorithms. Consider any problem for which there are only two possible answers, say, yes and no. If a Monte Carlo algorithm is employed to solve such a problem, then the algorithm might give incorrect answers depending on the output of the randomizer. We require that the probability of an incorrect answer from a Monte Carlo algorithm be low. 'Typically, for a fixed input, a Monte Carlo algorithm does not display
much variation in execution time between runs, whereas in the case of a Las Vegas algorithm this variation is significant.

We can think of a randomized algorithm with one possible randomizer output to be different from the same algorithm with a different possible randomizer output. Therefore, a randomized algorithm can be viewed as a family of algorithms. For a given input, some of the algorithms in this family may run for indefinitely long periods of time (or may give incorrect answers). The objective in the design of a randomized algorithm is to ensure that the number of such bad algorithms in the family is only a small fraction of the total number of algorithms. If for any input we can show that at least $1-\epsilon$ (ϵ being very close to 0) fraction of algorithms in the family will run quickly (respectively give the correct answer) on that input, then clearly, a random algorithm in the family will run quickly (or output the correct answer) on any input with probability $\geq 1-\epsilon$. In this case we say that this family of algorithms (or this randomized algorithm) runs quickly (respectively gives the correct answer) with probability at least $1-\epsilon$, where ϵ is called the error probability.

Definition 1.17 [The $\tilde{O}()$] Just like the $O()$ notation is used to characterize the run times of non randomized algorithms, $\widetilde{O}()$ is used for characterizing the run times of Las Vegas algorithms. We say a Las Vegas algorithm has a resource (time, space, and so on.) bound of $\widetilde{O}(g(n))$ if there exists a constant c such that the amount of resource used by the algorithm (on any input of size n) is no more than $c \alpha g(n)$ with probability $\geq 1-\frac{1}{n^{\alpha}}$. We shall refer to these bounds as high probability bounds.

Similar definitions apply also to such functions as $\tilde{\Theta}(), \tilde{\Omega}(), \widetilde{o}()$, etc.
Definition 1.18 [High probability] By high probability we mean a probability of $\geq 1-n^{-\alpha}$ for any fixed α. We call α the probability parameter.

As mentioned above, the run time T of any Las Vegas algorithm is typically characterized as a random variable over a sample space S. The sample points of S are all possible outcomes for the randomizer used in the algorithm. Though it is desirable to obtain the distribution of T, often this is a challenging and unnecessary task. The expected value of T often suffices as a good indicator of the run time. We can do better than obtaining the mean of T but short of computing the exact distribution by obtaining the high probability bounds. The high probability bounds of our interest are of the form "With high probability the value of T will not exceed T_{0}," for some appropriate T_{0}.

Several results from probability theory can be employed to obtain high probability bounds on any random variable. Two of the more useful such results are Markov's inequality and Chernoff bounds.

Next we give two examples of randomized algorithms. The first is of the Las Vegas type and the second is of the Monte Carlo type. Other examples are presented throughout the text. We say a Monte Carlo (Las Vegas) algorithm has failed if it does not give a correct answer (terminate within a specified amount of time).

1.4.3 Identifying the Repeated Element

Consider an array $a\left[\right.$] of n numbers that has $\frac{n}{2}$ distinct elements and $\frac{n}{2}$ copies of another element. The problem is to identify the repeated element.

Any deterministic algorithm for solving this problem will need at least $\frac{n}{2}+2$ time steps in the worst case. This fact can be argued as follows: Consider an adversary who has perfect knowledge about the algorithm used and who is in charge of selecting the input for the algorithm. Such an adversary can make sure that the first $\frac{n}{2}+1$ elements examined by the algorithm are all distinct. Even after having looked at $\frac{n}{2}+1$ elements, the algorithm will not be in a position to infer the repeated element. It will have to examine at least $\frac{n}{2}+2$ elements and hence take at least $\frac{n}{2}+2$ time steps.

In contrast there is a simple and elegant randomized Las Vegas algorithm that takes only $\widetilde{O}(\log n)$ time. It randomly picks two array elements and checks whether they come from two different cells and have the same value. If they do, the repeated element has been found. If not, this basic step of sampling is repeated as many times as it takes to identify the repeated element.

In this algorithm, the sampling performed is with repetitions; that is, the first and second elements are randomly picked from out of the n elements (each element being equally likely to be picked). Thus there is a probability (equal to $\frac{1}{n}$) that the same array element is picked each time. If we just check for the equality of the two elements picked, our answer might be incorrect (in case the algorithm picked the same array index each time). Therefore, it is essential to make sure that the two array indices picked are different and the two array cells contain the same value.

This algorithm is given in Algorithm 1.27. The algorithm returns the array index of one of the copies of the repeated element. Now we prove that the run time of the above algorithm is $\widetilde{O}(\log n)$. Any iteration of the while loop will be successful in identifying the repeated number if i is any one the $\frac{n}{2}$ array indices corresponding to the repeated element and j is any one of the same $\frac{n}{2}$ indices other than i. In other words, the probability that the algorithm quits in any given iteration of the while loop is $P=\frac{n / 2(n / 2-1)}{n^{2}}$, which is $\geq \frac{1}{5}$ for all $n \geq 10$. This implies that the probability that the algorithm does not quit in a given iteration is $<\frac{4}{5}$.

```
RepeatedElement (a,n)
// Finds the repeated element from a[1:n].
{
    while (true) do
        {
            i:= Random() mod n+1; j:= Random() mod n+1;
            // i and j are random numbers in the range [1,n].
            if ((i\not=j) and (a[i]=a[j])) then return i;
        }
}
```

Algorithm 1.27 Identifying the repeated array number

Therefore, the probability that the algorithm does not quit in 10 iterations is $<\left(\frac{4}{5}\right)^{10}<.1074$. So, Algorithm 1.27 will terminate in 10 iterations or less with probability $\geq .8926$. The probability that the algorithm does not terminate in 100 iterations is $<\left(\frac{4}{5}\right)^{100}<2.04 * 10^{-10}$. That is, almost certainly the algorithm will quit in 100 iterations or less. If n equals $2 * 10^{6}$, for example, any deterministic algorithm will have to spend at least one million time steps, as opposed to the 100 iterations of Algorithm 1.27!

In general, the probability that the algorithm does not quit in the first $c \alpha \log n$ (c is a constant to be fixed) iterations is

$$
<(4 / 5)^{c \alpha \log n}=n^{-c \alpha \log (5 / 4)}
$$

which will be $<n^{-\alpha}$ if we pick $c \geq \frac{1}{\log (5 / 4)}$.
Thus the algorithm terminates in $\frac{1}{\log (5 / 4)} \alpha \log n$ iterations or less with probability $\geq 1-n^{-\alpha}$. Since each iteration of the while loop takes $O(1)$ time, the run time of the algorithm is $\widetilde{O}(\log n)$.

Note that this algorithm, if it terminates, will always output the correct answer and hence is of the Las Vegas type. The above analysis shows that the algorithm will terminate quickly with high probability.

The same problem of inferring the repeated element can be solved using many deterministic algorithms. For example, sorting the array is one way. But sorting takes $\Omega(n \log n)$ time (proved in Chapter 10). An alternative is to partition the array into $\left\lceil\frac{n}{3}\right\rceil$ parts, where each part (possibly except for one part) has three array elements, and to search the individual parts for
the repeated element. At least one of the parts will have two copies of the repeated element. (Prove this!) The run time of this algorithm is $\Theta(n)$.

1.4.4 Primality Testing

Any integer greater than one is said to be a prime if its only divisors are 1 and the integer itself. By convention, we take 1 to be a nonprime. Then $2,3,5,7,11$, and 13 are the first six primes. Given an integer n, the problem of deciding whether n is a prime is known as primality testing. It has a number of applications including cryptology.

If a number n is composite (i.e., nonprime), it must have a divisor $\leq\lfloor\sqrt{n}\rfloor$. This observation leads to the following simple algorithm for primality testing: Consider each number ℓ in the interval $[2,[\sqrt{n}]]$ and check whether ℓ divides n. If none of these numbers divides n, then n is prime; otherwise it is composite.

Assuming that it takes $\Theta(1)$ time to determine whether one integer divides another, the naive primality testing algorithm has a run time of $O(\sqrt{n})$. The input size for this problem is $\lceil(\log n+1)\rceil$, since n can be represented in binary form with these many bits. Thus the run time of this simple algorithm is exponential in the input size (notice that $\sqrt{n}=2^{\frac{1}{2} \log n}$).

We can devise a Monte Carlo randomized algorithm for primality testing that runs in time $O\left((\log n)^{2}\right)$. The output of this algorithm is correct with high probability. If the input is prime, the algorithm never gives an incorrect answer. However, if the input number is composite (i.e., nonprime), then there is a small probability that the answer may be incorrect. Algorithms of this kind are said to have one-sided error.

Before presenting further details, we list two theorems from number theory that will serve as the backbone of the algorithm. The proofs of these theorems can be found in the references supplied at the end of this chapter.

Theorem 1.6 [Fermat] If n is prime, then $a^{n-1} \equiv 1(\bmod n)$ for any integer $a<n$.

Theorem 1.7 The equation $x^{2} \equiv 1(\bmod n)$ has exactly two solutions, namely 1 and $n-1$, if n is prime.

Corollary 1.1 If the equation $x^{2} \equiv 1(\bmod n)$ has roots other than 1 and $n-1$, then n is composite.

Note: Any integer x which is neither 1 nor $n-1$ but which satisfies $x^{2} \equiv 1$ $(\bmod n)$ is said to be a nontrivial square root of 1 modulo n.

Fermat's theorem suggests the following algorithm for primality testing: Randomly choose an $a<n$ and check whether $a^{n-1} \equiv 1 \quad(\bmod n)$ (call this

Fermat's equation). If Fermat's equation is not satisfied, n is composite. If the equation is satisfied, we try some more random a 's. If on each a tried, Fermat's equation is satisfied, we output " n is prime"; otherwise we output " n is composite." In order to compute $a^{n-1} \bmod n$, we could employ Exponentiate (Algorithm 1.16) with some minor modifications. The resultant primality testing algorithm is given as Algorithm 1.28. Here large is a number sufficiently large that ensures a probability of correctness of $\geq 1-$ $n^{-\alpha}$.

```
Prime0(n,\alpha)
// Returns true if }n\mathrm{ is a prime and false otherwise.
// \alpha is the probability parameter.
{
    q:=n-1;
    for }i:=1\mathrm{ to large do // Specify large.
    {
        m:=q;y:=1;
        a:= Random() mod q+1;
        // Choose a random number in the range [1,n-1].
        z:=a;
        // Compute a }\mp@subsup{a}{}{n-1}\operatorname{mod}n
        while (m>0) do
        {
                while ( m mod 2 = 0) do
            {
                z:= z}\mp@subsup{z}{}{2}\operatorname{mod}n;m:=\lfloorm/2\rfloor
            }
            m:=m-1;y:=(y*z) mod}n
        }
        if (y\not=1) then return false;
        // If }\mp@subsup{a}{}{n-1}\operatorname{mod}n\mathrm{ is not 1, n is not a prime.
        }
        return true;
}
```

Algorithm 1.28 Primality testing: first attempt

If the input is prime, Algorithm 1.28 will never output an incorrect answer. If n is composite, will Fermat's equation never be satisfied for any a less than n and greater than one? If so, the above algorithm has to examine just one a before coming up with the correct answer. Unfortunately, the
answer to this question is no. Even if n is composite, Fermat's equation may be satisfied depending on the a chosen.

Is it the case that for every n (that is composite) there will be some nonzero constant fraction of a 's less than n that will not satisfy Fermat's equation? If the answer is yes and if the above algorithm tries a sufficiently large number of a 's, there is a high probability that at least one a violating Fermat's equation will be found and hence the correct answer be output. Here again, the answer is no. There are composite numbers (known as Carnichael numbers) for which every a that is less than and relatively prime to n will satisfy Fermat's equation. (The number of a 's that do not satisfy Fermat's equation need not be a constant fraction.) The numbers 561 and 1105 are examples of Carmichael numbers.

Fortunately, a slight modification of the above algorithm takes care of these problems. The modified primality testing algorithm (also known as Miller-Rabin's algorithm) is the same as Prime0 (Algorithm 1.28) except that within the body of Prime0, we also look for nontrivial square roots of n. The modified version is given in Algorithm 1.29. We assume that n is odd.

Miller-Rabin's algorithm will never give an incorrect answer if the input is prime, since Fermat's equation will always be satisfied and no nontrivial square root of 1 modulo n can be found. If n is composite, the above algorithm will detect the compositeness of n if the randomly chosen a either leads to the discovery of a nontrivial square root of 1 or violates Fermat's equation. Call any such a a witness to the compositeness of n. What is the probability that a randomly chosen a will be a witness to the compositeness of n ? This question is answered by the following theorem (the proof can be found in the references at the end of this chapter).

Theorem 1.8 There are at least $\frac{n-1}{2}$ witnesses to the compositeness of n if n is composite and odd.

Assume that n is composite (since if n is prime, the algorithm will always be correct). The probability that a randomly chosen a will be a witness is $\geq \frac{n-1}{2 n}$, which is very nearly equal to $\frac{1}{2}$. This means that a randomly chosen a will fail to be a witness with probability $\leq \frac{1}{2}$.

Therefore, the probability that none of the first $\alpha \log n a$'s chosen is a witness is $\leq\left(\frac{1}{2}\right)^{\alpha \log n}=n^{-\alpha}$. In other words, the algorithm Prime will give an incorrect answer with only probability $\leq n^{-\alpha}$.

The run time of the outermost while loop is nearly the same as that of Exponentiate (Algorithm 1.16) and equal to $O(\log n)$. Since this while loop is executed $O(\log n)$ times, the run time of the whole algorithm is $O\left(\log ^{2} n\right)$.
5. Given a 2 -sided coin. Using this coin, how will you simulate an n-sided coin
(a) when n is a power of 2 ?.
(b) when n is not a power of 2 ?.
6. Compute the run time analysis of the Las Vegas algorithm given in Algorithm 1.30 and express it using the $\widetilde{O}()$ notation.

```
LasVegas()
{
    while (true) do
        {
            i:= Random() mod 2;
            if (i\geq1) then return;
    }
}
```

Algorithm 1.30 A Las Vegas algorithm
7. There are \sqrt{n} copies of an element in the array c. Every other element of c occurs exactly once. If the algorithm RepeatedElement is used to identify the repeated element of c, will the run time still be $\tilde{O}(\log n)$? If so, why? If not, what is the new run time?
8. What is the minimum number of times that an element should be repeated in an array (the other elements of the array occurring exactly once) so that it can be found using RepeatedElement in $\widetilde{O}(\log n)$ time?
9. An array a has $\frac{n}{4}$ copies of a particular unknown element x. Every other element in a has at most $\frac{n}{8}$ copies. Present an $O(\log n)$ time Monte Carlo algorithm to identify x. The answer should be correct with high probability. Can you develop an $\widetilde{O}(\log n)$ time Las Vegas algorithm for the same problem?
10. Consider the naive Monte Carlo algorithm for primality testing presented in Algorithm 1.31. Here Power (x, y) computes x^{y}. What should be the value of t for the algorithm's output to be correct with high probability?
11. Let \mathcal{A} be a Monte Carlo algorithm that solves a decision problem π in time T. The output of \mathcal{A} is correct with probability $\geq \frac{1}{2}$. Show how

```
Prime1(n)
{
    // Specify t.
    for }i:=1\mathrm{ to }t\mathrm{ do
    {
            m:= Power(n,0.5);
            j:= Random() mod m+2;
            if ((n mod j)=0) then return false;
            // If j divides n, n is not prime.
        }
    return true;
}
```

Algorithm 1.31 Another primality testing algorithm
you can modify \mathcal{A} so that its answer is correct with high probability. The modified version can take $O(T \log n)$ time.
12. In general a Las Vegas algorithm is preferable to a Monte Carlo algorithm, since the answer given by the former is guaranteed to be correct. There may be critical situations in which even a very small probability of an incorrect answer is unacceptable. Say there is a Monte Carlo algorithm for solving a problem π in T_{1} time units whose output is correct with probability $\geq \frac{1}{2}$. Also assume that there is another algorithm that can check whether a given answer is valid for π in T_{2} time units. Show how you use these two algorithms to arrive at a Las Vegas algorithm for solving π in time $\widetilde{O}\left(\left(T_{1}+T_{2}\right) \log n\right)$.
13. The problem considered here is that of searching for an element x in an array $a[1: n]$. Algorithm 1.17 gives a deterministic $\Theta(n)$ time algorithm for this problem. Show that any deterministic algorithm will have to take $\Omega(n)$ time in the worst case for this problem. In contrast a randomized Las Vegas algorithm that searches for x is given in Algorithm 1.32. This algorithm assumes that x is in $a[]$. What is the $\widetilde{O}()$ run time of this algorithm?

```
Algorithm RSearch \((a, x, n)\)
// Searches for \(x\) in \(a[1: n]\). Assume that \(x\) is in \(a[]\).
\{
    while (true) do
    \{
        \(i:=\) Random() \(\bmod n+1\);
        \(/ / i\) is random in the range \([1, n]\).
        if \((a[i]=x)\) then return \(i\);
    \}
\}
```

Algorithm 1.32 Randomized search

1.5 REFERENCES AND READINGS

For a more detailed discussion of performance analysis and measurement, see Software Development in Pascal, Third Edition, by S. Sahni, NSPAN Printing and Publishing, 1993.

For a discussion on mathematical tools for analysis see Concrete Mathematics: A Foundation for Computer Science, by R. L. Graham, D. E. Knuth, and O. Patashnik, Addison-Wesley, 1989.

More details about the primality testing algorithm can be found in Introduction to Algorithms, by T. H. Cormen, C. E. Leiserson, and R. L. Rivest, MIT Press, 1990.

An excellent introductory text on probability theory is Probability and Random Processes, by G. R. Grimmet and D. R. Stirzaker, Oxford University Press, 1988. A proof of Lemma 1.1 can be found in this book. For a proof of Lemma 1.2 see Queueing Systems, Vol. I, by L. Kleinrock, John Wiley \& Sons, 1975.

A formal treatment of randomized algorithms and several examples can be found in "Derivation of randomized algorithms for sorting and selection," by S. Rajasekaran and J. H. Reif, in Parallel Algorithm Derivation and Program Transformation, edited by R. Paige, J. H. Reif, and R. Wachter, Kluwer Academic Publishers, 1993, pp. 187-205. For more on randomized algorithms see Randomized Algorithms by R. Motwani and P. Raghavan, Cambridge University Press, 1995.
(b) Compare the performances of max heaps and binary search trees as data structures for priority queues. For this comparison, generate random sequences of insert and delete max operations and measure the total time taken for each sequence by each of these data structures.
6. Input is a sequence X of n keys with many duplications such that the number of distinct keys is $d(<n)$. Present an $O(n \log d)$-time sorting algorithm for this input. (For example, if $X=5,6,1,18,6,4,4,1$, 5,17 , the number of distinct keys in X is six.)

2.5 SETS AND DISJOINT SET UNION

2.5.1 Introduction

In this section we study the use of forests in the representation of sets. We shall assume that the elements of the sets are the numbers $1,2,3, \ldots, n$. These numbers might, in practice, be indices into a symbol table in which the names of the elements are stored. We assume that the sets being represented are pairwise disjoint (that is, if S_{i} and $S_{j}, i \neq j$, are two sets, then there is no element that is in both S_{i} and S_{j}). For example, when $n=10$, the elements can be partitioned into three disjoint sets, $S_{1}=\{1,7,8,9\}, S_{2}=\{2,5,10\}$, and $S_{3}=\{3,4,6\}$. Figure 2.17 shows one possible representation for these sets. In this representation, each set is represented as a tree. Notice that for each set we have linked the nodes from the children to the parent, rather than our usual method of linking from the parent to the children. The reason for this change in linkage becomes apparent when we discuss the implementation of set operations.

Figure 2.17 Possible tree representation of sets

The operations we wish to perform on these sets are:

1. Disjoint set union. If S_{i} and S_{j} are two disjoint sets, then their union $S_{i} \cup S_{j}=$ all elements x such that x is in S_{i} or S_{j}. Thus, $S_{1} \cup S_{2}$ $=\{1,7,8,9,2,5,10\}$. Since we have assumed that all sets are disjoint, we can assume that following the union of S_{i} and S_{j}, the sets S_{i} and S_{j} do not exist independently; that is, they are replaced by $S_{i} \cup S_{j}$ in the collection of sets.
2. Find (i). Given the element i, find the set containing i. Thus, 4 is in set S_{3}, and 9 is in set S_{1}.

2.5.2 Union and Find Operations

Let us consider the union operation first. Suppose that we wish to obtain the union of S_{1} and S_{2} (from Figure 2.17). Since we have linked the nodes from children to parent, we simply make one of the trees a subtree of the other. $S_{1} \cup S_{2}$ could then have one of the representations of Figure 2.18.

Figure 2.18 Possible representations of $S_{1} \cup S_{2}$

To obtain the union of two sets, all that has to be done is to set the parent field of one of the roots to the other root. This can be accomplished easily if, with each set name, we keep a pointer to the root of the tree representing that set. If, in addition, each root has a pointer to the set name, then to determine which set an element is currently in, we follow parent links to the root of its tree and use the pointer to the set name. The data representation for S_{1}, S_{2}, and S_{3} may then take the form shown in Figure 2.19.

In presenting the union and find algorithms, we ignore the set names and identify sets just by the roots of the trees representing them. This simplifies

Figure 2.19 Data representation for S_{1}, S_{2}, and S_{3}
the discussion. The transition to set names is easy. If we determine that element i is in a tree with root j, and j has a pointer to entry k in the set name table, then the set name is just name $[k]$. If we wish to unite sets $S_{\text {, }}$ and S_{j}, then we wish to unite the trees with roots $\operatorname{FindPointer}\left(S_{i}\right)$ and FindPointer $\left(S_{j}\right)$. Here FindPointer is a function that takes a set name and determines the root of the tree that represents it. This is done by an examination of the [set name, pointer] table. In many applications the set name is just the element at the root. The operation of Find (i) now becomes: Determine the root of the tree containing element i. The function $\operatorname{Union}(i, j)$ requires two trees with roots i and j be joined. Also to simplify, assume that the set elements are the numbers 1 through n.

Since the set elements are numbered 1 through n, we represent the tree nodes using an array $p[1: n]$, where n is the maximum number of elements. The i th element of this array represents the tree node that contains element i. This array element gives the parent pointer of the corresponding tree node. Figure 2.20 shows this representation of the sets S_{1}, S_{2}, and S_{3} of Figure 2.17. Notice that root nodes have a parent of -1 .

i	$[1]$	$[2]$	$[3]$	$[4]$	$[5]$	$[6]$	$[7]$	$[8]$	$[9]$	$[10]$
p	-1	5	-1	3	-1	3	1	1	1	5

Figure 2.20 Array representation of S_{1}, S_{2}, and S_{3} of Figure 2.17

We can now implement Find (i) by following the indices, starting at i until we reach a node with parent value -1 . For example, Find(6) starts at 6 and then moves to 6 's parent, 3 . Since $p[3]$ is negative, we have reached the root. The operation $\operatorname{Union}(i, j)$ is equally simple. We pass in two trees with roots i and j. Adopting the convention that the first tree becomes a subtree of the second, the statement $p[i]:=j$; accomplishes the union.

```
Algorithm SimpleUnion(i,j)
{
    p[i]:= j;
}
Algorithm SimpleFind(i)
{
    while (p[i]\geq0) do i:= p[i];
    return i;
}
```

Algorithm 2.13 Simple algorithms for union and find

Algorithm 2.13 gives the descriptions of the union and find operations just discussed. Although these two algorithms are very easy to state, their performance characteristics are not very good. For instance, if we start with q elements each in a set of its own (that is, $S_{i}=\{i\}, 1 \leq i \leq q$), then the initial configuration consists of a forest with q nodes, and $\bar{p}[i]=0,1 \leq i \leq q$. Now let us process the following sequence of union-find operations:

$$
\begin{gathered}
\operatorname{Union}(1,2), \operatorname{Union}(2,3), \operatorname{Union}(3,4), \operatorname{Union}(4,5), \ldots, \operatorname{Union}(n-1, n) \\
\operatorname{Find}(1), \operatorname{Find}(2), \ldots, \operatorname{Find}(n)
\end{gathered}
$$

This sequence results in the degenerate tree of Figure 2.21.
Since the time taken for a union is constant, the $n-1$ unions can be processed in time $O(n)$. However, each find requires following a sequence of parent pointers from the element to be found to the root. Since the time required to process a find for an element at level i of a tree is $O(i)$, the total time needed to process the n finds is $O\left(\sum_{i=1}^{n} i\right)=O\left(n^{2}\right)$.

We can improve the performance of our union and find algorithms by avoiding the creation of degenerate trees. To accomplish this, we make use of a weighting rule for $\operatorname{Union}(i, j)$.

Figure 2.21 Degenerate tree

Definition 2.5 [Weighting rule for $\operatorname{Union}(i, j)$] If the number of nodes in the tree with root i is less than the number in the tree with root j, then make j the parent of i; otherwise make i the parent of j.

When we use the weighting rule to perform the sequence of set unions given before, we obtain the trees of Figure 2.22. In this figure, the unions have been modified so that the input parameter values correspond to the roots of the trees to be combined.

To implement the weighting rule, we need to know how many nodes there are in every tree. To do this easily, we maintain a count field in the root of every tree. If i is a root node, then count $[i]$ equals the number of nodes in that tree. Since all nodes other than the roots of trees have a positive number in the p field, we can maintain the count in the p field of the roots as a negative number.

Using this convention, we obtain Algorithm 2.14. In this algorithm the time required to perform a union has increased somewhat but is still bounded by a constant (that is, it is $O(1)$). The find algorithm remains unchanged. The maximum time to perform a find is determined by Lemma 2.3 .

Lemma 2.3 Assume that we start with a forest of trees, each having one node. Let T be a tree with m nodes created as a result of a sequence of unions each performed using WeightedUnion. The height of T is no greater than $\left\lfloor\log _{2} m\right\rfloor+1$.
Proof: The lemma is clearly true for $m=1$. Assume it is true for all trees with i nodes, $i \leq m-1$. We show that it is also true for $i=m$.

Figure 2.22 Trees obtained using the weighting rule

```
Algorithm WeightedUnion \((i, j)\)
// Union sets with roots \(i\) and \(j, i \neq j\), using the
// weighting rule. \(p[i]=-\operatorname{count}[i]\) and \(p[j]=-\operatorname{count}[j]\).
    temp \(:=p[i]+p[j] ;\)
    if \((p[i]>p[j])\) then
    \{ // \(i\) has fewer nodes.
        \(p[i]:=j ; p[j]:=\) temp \(;\)
    \}
    else
    \{ // \(j\) has fewer or equal nodes.
        \(p[j]:=i ; p[i]:=\) temp \(;\)
    \}
\}
```

Algorithm 2.14 Union algorithm with weighting rule

Let T be a tree with m nodes created by WeightedUnion. Consider the last union operation performed, $\operatorname{Union}(k, j)$. Let a be the number of nodes in tree j, and $m-a$ the number in k. Without loss of generality we can assume $1 \leq a \leq \frac{m}{2}$. Then the height of T is either the same as that of k or is one more than that of j. If the former is the case, the height of T is $\leq\left\lfloor\log _{2}(m-a)\right\rfloor+1 \leq\left\lfloor\log _{2} m\right\rfloor+1$. However, if the latter is the case, the height. of T is $\leq\left\lfloor\log _{2} a\right\rfloor+2 \leq\left\lfloor\log _{2} \frac{m}{2}\right\rfloor+2 \leq\left\lfloor\log _{2} m\right\rfloor+1$.

Eximple 2.4 shows that the bound of Lemma 2.3 is achievable for some sequence of unions.

Example 2.4 Consider the behavior of WeightedUnion on the following sequence of unions starting from the initial configuration $p[i]=-$ count $[i]=$ $-1,1 \leq i \leq 8=n$:

$$
\begin{gathered}
\operatorname{Union}(1,2), \operatorname{Union}(3,4), \operatorname{Union}(5,6), \operatorname{Union}(7,8), \\
\operatorname{Union}(1,3), \operatorname{Union}(5,7), \operatorname{Union}(1,5)
\end{gathered}
$$

The trees of Figure 2.23 are obtained. As is evident, the height of each tree with m nodes is $\left\lfloor\log _{2} m\right\rfloor+1$.

From Lemma 2.3, it follows that the time to process a find is $O(\log m)$ if there are m elements in a tree. If an intermixed sequence of $u-1$ union and f find operations is to be processed, the time becomes $O(u+f \log u)$, as no tree has more than u nodes in it. Of course, we need $O(n)$ additional time to initialize the n-tree forest.

Surprisingly, further improvement is possible. This time the modification is marle in the find algorithm using the collapsing rule.

Definition 2.6 [Collapsing rule]: If j is a node on the path from i to its root and $p \mid i] \neq \operatorname{root}[i]$, then set $p[j]$ to $\operatorname{root}[i]$.

CollapsingFind (Algorithm 2.15) incorporates the collapsing rule.
Example 2.5 Consider the tree created by WeightedUnion on the sequence of unions of Example 2.4. Now process the following eight finds:

$$
\operatorname{Find}(8), \operatorname{Find}(8), \ldots, \operatorname{Find}(8)
$$

If SimpleFind is used, each Find(8) requires going up three parent link fields for a total of 24 moves to process all eight finds. When CollapsingFind is used, the first Find(8) requires going up three links and then resetting two links. Note that even though only two parent links need to be reset, CollapsingFind will reset three (the parent of 5 is reset to 1). Each of the remaining seven finds requires going up only one link field. The total cost is now only 13 moves.
[-1] [-1] $[-1] \quad[-1] \quad[-1] \quad[-1] \quad[-1] \quad[-1]$
(1) (2) (3) (4) (5) (6) (7) (8)
(a) Initial height-1 trees

(b) Height-2 trees following Union(1,2), (3,4), (5,6), and (7,8)

(c) Height-3 trees following $\operatorname{Union}(1,3)$ and $(5,7)$

(d) Height-4 tree following Union(1,5)

Figure 2.23 Trees achieving worst-case bound

```
Algorithm CollapsingFind (i)
// Find the root of the tree containing element \(i\). Use the
// collapsing rule to collapse all nodes from \(i\) to the root.
\{
    \(r:=i ;\)
    while \((p[r]>0)\) do \(r:=p[r]\); // Find the root.
    while \((i \neq r)\) do // Collapse nodes from \(i\) to root \(r\).
    \{
        \(s:=p[i] ; p[i]:=r ; i:=s ;\)
    \}
    return \(r\);
\}
```

Algorithm 2.15 Find algorithm with collapsing rule

In the algorithms WeightedUnion and CollapsingFind, use of the collapsing rule roughly doubles the time for an individual find. However, it reduces the worst-case time over a sequence of finds. The worst-case complexity of processing a sequence of unions and finds using WeightedUnion and CollapsingFind is stated in Lemma 2.4. This lemma makes use of a function $\alpha(p, q)$ that is related to a functional inverse of Ackermann's function $A(i, j)$. These functions are defined as follows:

$$
\begin{array}{cl}
A(1, j)=2^{j} & \text { for } j \geq 1 \\
A(i, 1)=A(i-1,2) & \text { for } i \geq 2 \\
A(i, j)=A(i-1, A(i, j-1)) & \text { for } i, j \geq 2 \\
& \\
\alpha(p, q)=\min \left\{z \geq 1 \left\lvert\, A\left(z,\left\lfloor\frac{p}{q}\right\rfloor\right)>\log _{2} q\right.\right\}, \quad p \geq q \geq 1
\end{array}
$$

The function $A(i, j)$ is a very rapidly growing function. Consequently, α grows very slowly as p and q are increased. In fact, since $A(3,1)=16$, $\alpha(p, q) \leq 3$ for $q<2^{16}=65,536$ and $p \geq q$. Since $A(4,1)$ is a very large number and in our application q is the number n of set elements and p is $n+f(f$ is the number of finds $), \alpha(p, q) \leq 4$ for all practical purposes.

Lemma 2.4 [Tarjan and Van Leeuwen] Assume that we start with a forest of tress, each having one node. Let $T(f, u)$ be the maximum time required to process any intermixed sequence of f finds and u unions. Assume that $u \geq \frac{n}{2}$. Then

$$
k_{1}[n+f \alpha(f+n, n)] \leq T(f, u) \leq k_{2}[n+f \alpha(f+n, n)]
$$

for some positive constants k_{1} and k_{2}.
The requirement that $u \geq \frac{n}{2}$ in Lemma 2.4 is really not significant, as when $u<\frac{n}{2}$, some elements are involved in no union operation. These elements remain in singleton sets throughout the sequence of union and find operations and can be eliminated from consideration, as find operations that involve these can be done in $O(1)$ time each. Even though the function $\alpha(f, u)$ is a very slowly growing function, the complexity of our solution to the set representation problem is not linear in the number of unions and finds. The space requirements are one node for each element.

In the exercises, we explore alternatives to the weight rule and the collapsing rule that preserve the time bounds of Lemma 2.4.

EXERCISES

1. Suppose we start with n sets, each containing a distinct element.
(a) Show that if u unions are performed, then no set contains more than $u+1$ elements.
(b) Show that at most $n-1$ unions can be performed before the number of sets becomes 1 .
(c) Show that if fewer than $\left\lceil\frac{n}{2}\right\rceil$ unions are performed, then at least one set with a single element in it remains.
(d) Show that if u unions are performed, then at least $\max \{n-2 u, 0\}$ singleton sets remain.
2. Experimentally compare the performance of SimpleUnion and SimpleFind (Algorithm 2.13) with WeightedUnion (Algorithm 2.14) and CollapsingFind (Algorithm 2.15). For this, generate a random sequence of union and find operations.
3. (a) Present an algorithm HeightUnion that uses the height rule for union operations instead of the weighting rule. This rule is defined below:

Definition 2.7 [Height rule] If the height of tree i is less than that of tree j, then make j the parent of i; otherwise make i the parent of j.

Your algorithm must run in $O(1)$ time and should maintain the height of each tree as a negative number in the p field of the root.

Chapter-5 Basic Traversal and Search Techniques

5.1 Techniques for Binary Trees

Binary Tree

A binary tree is a finite set of nodes which is either empty or consists of a root and two disjoint binary trees called the left sub tree and the right sub tree.
In a traversal of a binary tree, each element of the binary tree is visited exactly at once. During the visiting of an element, all actions like clone, display, evaluate the operator etc is taken with respect to the element. When traversing a binary tree, we need to follow linear order i.e. L, D, R where
L->Moving left
D->printing the data
$\mathrm{R}->$ moving right

We have three traversal techniques on binary tree. They are

- In order
- Post order
- Pre order

Examples

For fig: 1

In order: A-B-C-D-E-F-G-H-I
Post order: A-C-E-D-B-H-I-G-F
Pre order: F-B-A-D-C-E-G-I-H

Preorder, post order and in order algorithms

Algorithm preorder(x)

Input: x is the root of a sub tree.

1. If $x \neq$ NULL
2. Then output key(x);
3. Preorder (left(x));
4. Preorder (right(x));

Algorithm postorder(x)
Input: x is the root of a subtree

1. If $x \neq$ NULL
2. Then postorder(left(x));;
3. Postorder(right(x));
4. Outputkey(x);

B $\Rightarrow C$
Algorithm inorder(x)
Input: x is the root of a subtree

1. If $x \neq$ null
2. Then inorder(left(x));
3. Outputkey(x);
4. Inorder(right(x));

Exercises

5.2 Techniques for Graphs

Graph: The sequence of edges that connected two vertices.
A graph is a pair (V, E), where
V is a set of nodes, called vertices
E is a collection (can be duplicated) of pairs of vertices, called edges
Vertices and edges are data structures and store elements.
Types of graphs: Graphs are of three types.
a. Directed/Undirected: In a directed graph the direction of the edges must be considered

Fig 5.1

Fig 5.2
b. Weighted/ Unweighted: A weighted graph has values on its edge.

Fig 5.3

Fig 5.4
c. Cyclic/Acyclic: A cycle is a path that begins and ends at same vertex and A graph with no cycles is acyclic.

Representation of graphs

Graphs can be represented in three ways
(i) Adjacency Matrix: A V x V array, with matrix $[i][j]$ storing whether there is an edge between the $i t h$ vertex and the $j t h$ vertex. This matrix is also called as "Bit matrix" or "Boolean Matrix"

(ii) Adjacency list: One linked list per vertex, each storing directly reachable vertices .

(iii) Linked List or Edge list:

Graph traversal techniques

"The process of traversing all the nodes or vertices on a graph is called graph traversal".
We have two traversal techniques on graphs
DFS
BFS
Depth First Search
The DFS explore each possible path to its conclusion before another path is tried. In other words go as a far as you can (if u don't have a node to visit), otherwise, go back and try another way. Simply it can be called as "backtracking".

Steps for DFS
(i) Select an unvisited node ' v ' visits it and treats it as the current node.
(ii) Find an unvisited neighbor of current node, visit it and make it new current node
(iii) If the current node has no unvisited neighbors, backtrack to its parent and make it as a new current node
(iv) Repeat steps 2 and 3 until no more nodes can be visited
(v) Repeat from step 1 for remaining nodes also.

Implementation of DFS

```
DFS (Vertex)
{
Mark u as visiting
For each vertex V directly reachable from u
If v}\mathrm{ is unvisited
DFS (v)
}
```

(A) unexplored vertex
(A) visited vertex
unexplored edge
\longrightarrow discovery edge
$\boldsymbol{-} \rightarrow$ backedge

Unexplored vertex: The node or vertex which is not yet visited.
Visited vertex: The node or vertex which is visited is called 'visited vertex' i.e. can be called as "current node".

Unexplored edge: The edge or path which is not yet traversed.
Discovery edge: It is opposite to unexplored edge, the path which is already traversed is known as discovery edge.

Back edge: If the current node has no unvisited neighbors we need to backtrack to its parent node. The path used in back tracking is called back edge.

For the following graph the steps for tracing are as follows:

Properties of DFS

i) DFS (G, v) visits all the vertices and edges in the connected component of v.
ii) The discovery edges labeled by DFS (G, v) form a spanning tree of the connected component of v.

Tracing of graph using Depth First Search
(a)

| topVertex | nextNeighbor | Visited vertex | vertexStack
 (top to bottom) |
| :---: | :---: | :---: | :---: | | traversa1Order |
| :---: |
| (front to back) |

		A	A	A
A			A	
	B	B	BA	AB
B			BA	
	E	E	EBA	ABE
E			EBA	
	F	F	FEBA	ABEF
F			FEBA	
	C	C	CFEBA	ABEFC
C			FEBA	
F			FEBA	
	H	H	HFEBA	ABEFCH
H			HFEBA	
	I	I	IHFEBA	ABEFCHI
I			HFEBA	
H			FEBA	
F			EBA	
E			BA	
B			A	
A			A	
	D	D	DA	ABEFCHID
D			DA	
	G		GDA	ABEFCHIDG
G			DA	
D			A	
A			empty	ABEFCHIDG

Exercise

1.

Depth: W-U-V-Y-X-Z
2.

Depth: A-B-C-E-D

3

Depth: 1-2-3-4-5-6-7-8-9-10-11-12.

5.3 Breadth First Search

It is one of the simplest algorithms for searching or visiting each vertex in a graph. In this method each node on the same level is checked before the search proceeds to the next level. BFS makes use of a queue to store visited vertices, expanding the path from the earliest visited vertices
Breadth: a-b-c-d-e-f-g-h-i-j-k

Steps for BFS:

1. Mark all the vertices as unvisited.
2. Choose any vertex say ' v ', mark it as visited and put it on the end of the queue.
3. Now, for each vertex on the list, examine in same order all the vertices adjacent to ' v '
4. When all the unvisited vertices adjacent to v have been marked as visited and put it on the end (rear of the queue) of the list.
5. Remove a vertex from the front of the queue and repeat this procedure.

6 . Continue this procedure until the list is empty.

Breadth-first search

Implementation of BFS

While queue Q not empty
De queue the first vertex \mathbf{u} from Q
For each vertex \mathbf{v} directly reachable from \mathbf{u}
If \mathbf{v} is unvisited
En queue \mathbf{v} to \mathbf{Q}
Mark \mathbf{v} as visited
${ }^{\prime}$ Initially all vertices except the start vertex are marked as unvisited and the queue contains the start vertex only.

Explored vertex: A vertex is said to be explored if all the adjacent vertices of \mathbf{v} are visited.
Example 1: Breadth first search for the following graph:

Properties of BFS

Notation: $\boldsymbol{G s}$ (connected component of \boldsymbol{s})
i) $\boldsymbol{B F S}(\boldsymbol{G}, \boldsymbol{s})$ visits all the vertices and edges of $\boldsymbol{G s}$
ii) The discovery edges labeled by $\boldsymbol{B F S}(\boldsymbol{G}, \boldsymbol{s})$ form a spanning tree $\boldsymbol{T s}$ of \boldsymbol{G}
iii) For each vertex \boldsymbol{v} in $\boldsymbol{L i}$
a. The path of $\boldsymbol{T s}$ from \boldsymbol{s} to \boldsymbol{v} has \boldsymbol{i} edges
b. Every path from \boldsymbol{s} to \boldsymbol{v} in $\boldsymbol{G s}$ has at least \boldsymbol{i} edges.

Complexity of BFS

Step1: read a node from the queue $O(v)$ times.
Step2: examine all neighbors, i.e. we examine all edges of the currently read node. Not oriented graph: $2 * \mathrm{E}$ edges to examine
Hence the complexity of BFS is $O(V+2 * E)$

Tracing of graph using Breadth first search:
(a)

front Vertex	nextNeighbor	Visited vertex A	vertexpueue A	traversal0rder A
A			empty	
	B	B	B	AB
	D	D	B D	ABD
	E	E	BDE	ABDE
B			DE	
D			E	
	G	G	E G	ABDEG
E			G	
	F	F	G F	ABDEGF
	H	H	G FH	ABDEGFH
G			FH	
F			H	
	C	C	HC	ABDEGFHC
H			C	
	I	I	C I	ABDEGFHCI
C			I	
I			empty	

BFS: 7-11-8-2-9-10-5-3

BFS: afhegidjkclnbmo

BFS:

Graph:C

5.4 Connected Components and Spanning Trees

Connected component: If G is connected undirected graph, then we can visit all the vertices of the graph in the first call to BFS. The sub graph which we obtain after traversing the graph using BFS represents the connected component of the graph.

Thus BFS can be used to determine whether G is connected. All the newly visited vertices on call to BFS represent the vertices in connected component of graph G. The sub graph formed by theses vertices make the connected component.

Spanning tree of a graph: Consider the set of all edges (u, w) where all vertices w are adjacent to u and are not visited. According to BFS algorithm it is established that this set of edges give the spanning tree of G , if G is connected. We obtain depth first search spanning tree similarly
These are the BFS and DFS spanning trees of the graph G

Bi-connected Components

A connected undirected graph is said to be bi-connected if it remains connected after removal of any one vertex and the edges that are incident upon that vertex.
In this we have two components.
i. Articulation point: Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a connected undirected graph. Then an articulation point of graph ' G ' is a vertex whose articulation point of graph is a vertex whose removal disconnects the graph ' G '. It is also known as "cut point".
ii. Bi-connected graph: A graph ' G ' is said to be bi-connected if it contains no-articulation point.

Articulation points for the above undirected graph are B, E, F
i) After deleting vertex B and incident edges of B , the given graph is divided into two components

ii) After deleting the vertex E and incident edges of E , the resulting components are

iii) After deleting vertex F and incident edges of F , the given graph is divided into teo components.

Note: If there exists any articulation point, it is an undesirable feature in communication network where joint point between two networks failure in case of joint node fails.

Algorithm to construct the Bi- Connected graph

1. For each articulation point ' a ' do
2. Let B1, B2, B3Bk are the Bi-connected components
3. Containing the articulation point ' a '

4. Let Vi E Bi, Vi \# a i<=i<=k

5. Add (Vi,Vi+1) to Graph G.

Vi-vertex belong Bi
Bi-Bi-connected component
i- Vertex number 1 to k
a- articulation point

Exercise

UNIT-II

Divide and Conquer

General Method

Divide and conquer is a design strategy which is well known to breaking down efficiency barriers. When the method applies, it often leads to a large improvement in time complexity. For example, from $O\left(n^{2}\right)$ to $O(n \log n)$ to sort theelements.

Divide and conquer strategy is as follows: divide the problem instance into two or more smaller instances of the same problem, solve the smaller instances recursively, and assemble the solutions to form a solution of the original instance. The recursion stops when an instance is reached which is too small to divide. When dividing the instance, one can either use whatever division comes most easily to hand or invest time in making the division carefully so that the assembly is simplified.

Divide and conquer algorithm consists of two parts:
Divide : Divide the problem into a number of sub problems. The sub problems are solved recursively.
Conquer : The solution to the original problem is then formed from the solutions to the sub problems (patching together the answers).

Traditionally, routines in which the text contains at least two recursive calls are called divide and conquer algorithms, while routines whose text contains only one recursive call are not. Divide-and-conquer is a very powerful use of recursion.

Control Abstraction of Divide and Conquer

A control abstraction is a procedure whose flow of control is clear but whose primary operations are specified by other procedures whose precise meanings are left undefined. The control abstraction for divide and conquer technique is DANDC(P), where P is the problem to be solved.

DANDC (P)

\{
if SMALL (P) then return $S(p)$;

```
        else
``` apply DANDC to each of these sub problems; return (COMBINE (DANDC \(\left(p_{1}\right)\), DANDC \(\left(p_{2}\right), \ldots .\), DANDC \(\left.\left(p_{k}\right)\right)\);
\}
\}

SMALL (\(P\)) is a Boolean valued function which determines whether the input size is small enough so that the answer can be computed without splitting. If this is so function ' \(S^{\prime}\) ' is invoked otherwise, the problem ' \(p\) ' into smaller sub problems. These sub problems \(p_{1}, p_{2}, \ldots, p_{k}\) are solved by recursive application of DANDC.

If the sizes of the two sub problems are approximately equal then the computing time of DANDC is:
\[
T(n)= \begin{cases}g(n) & n \text { small } \\ 2 T(n / 2)+f(n) & \text { otherwise }\end{cases}
\]

Where, \(T(n)\) is the time for DANDC on ' \(n\) ' inputs
\(g(n)\) is the time to complete the answer directly for small inputs and
\(\mathrm{f}(\mathrm{n})\) is the time for Divide and Combine

\section*{Binary Search}

If we have ' \(n\) ' records which have been ordered by keys so that \(x_{1}<x_{2}<\ldots<x_{n}\). When we are given a element ' \(x\) ', binary search is used to find the corresponding element from the list. In case ' \(x\) ' is present, we have to determine a value ' \(j\) ' such that \(a[j]=x\) (successful search). If ' \(x\) ' is not in the list then \(j\) is to set to zero (un successful search).

In Binary search we jump into the middle of the file, where we find key a[mid], and compare ' \(x\) ' with \(a[m i d]\). If \(x=a[m i d]\) then the desired record has been found. If \(x<a[m i d]\) then ' \(x\) ' must be in that portion of the file that precedes a[mid], if there at all. Similarly, if a[mid] > \(x\), then further search is only necessary in that past of the file which follows a[mid]. If we use recursive procedure of finding the middle key a[mid] of the un-searched portion of a file, then every un-successful comparison of ' \(x\) ' with \(a[m i d]\) will eliminate roughly half the un-searched portion from consideration.

Since the array size is roughly halved often each comparison between ' \(x\) ' and \(a[m i d]\), and since an array of length ' \(n\) ' can be halved only about \(\log _{2} n\) times before reaching a trivial length, the worst case complexity of Binary search is about \(\log _{2} n\)

\section*{Algorithm Algorithm}

BINSRCH (\(\mathrm{a}, \mathrm{n}, \mathrm{x}\))
// array \(a(1: n)\) of elements in increasing order, \(n \geq 0\),
// determine whether ' x ' is present, and if so, set j such that \(\mathrm{x}=\mathrm{a}(\mathrm{j})\)
// else return j
\{
low :=1; high :=n ;
while (low \(\leq\) high) do
\{
mid :=|(low + high)/2|
if (\(x<a\) [mid]) then high: \(=\) mid -1 ;
else if (\(x>a[m i d]\)) then low: \(=\) mid +1
else return mid;
\}
return 0;
\}
low and high are integer variables such that each time through the loop either ' \(x\) ' is found or low is increased by at least one or high is decreased by at least one. Thus we have two sequences of integers approaching each other and eventually low will become greater than high causing termination in a finite number of steps if ' \(x\) ' is not present.

\section*{Example for Binary Search}

Let us illustrate binary search on the following 9 elements:
\begin{tabular}{|l|c|c|c|c|c|c|c|c|c|}
\hline Index & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\hline Elements & -15 & -6 & 0 & 7 & 9 & 23 & 54 & 82 & 101 \\
\hline
\end{tabular}

The number of comparisons required for searching different elements is asfollows:
1. Searching for \(x=101\)
\begin{tabular}{ccc}
low & high & mid \\
1 & 9 & 5 \\
6 & 9 & 7 \\
8 & 9 & 8 \\
9 & 9 & 9 \\
& & found
\end{tabular}

Number of comparisons \(=4\)
2. Searching for \(x=82\)
\begin{tabular}{ccc}
low & high & mid \\
1 & 9 & 5 \\
6 & 9 & 7 \\
8 & 9 & 8 \\
& & found
\end{tabular}

Number of comparisons \(=3\)
3. Searching for \(x=42\)
\begin{tabular}{ccc}
low & high & mid \\
1 & 9 & 5 \\
6 & 9 & 7 \\
6 & 6 & 6 \\
7 & \multicolumn{2}{c}{ not found }
\end{tabular}

Number of comparisons \(=4\)
4. Searching for \(x=-14\)
\begin{tabular}{ccc}
low & high & mid \\
1 & 9 & 5 \\
1 & 4 & 2 \\
1 & 1 & 1 \\
2 & 1 & not found
\end{tabular}

Number of comparisons \(=3\)
Continuing in this manner the number of element comparisons needed to find each of nine elements is:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Index & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\hline Elements & -15 & -6 & 0 & 7 & 9 & 23 & 54 & 82 & 101 \\
\hline Comparisons & 3 & 2 & 3 & 4 & 1 & 3 & 2 & 3 & 4 \\
\hline
\end{tabular}

No element requires more than 4 comparisons to be found. Summing the comparisons needed to find all nine items and dividing by 9, yielding 25/9 or approximately 2.77 comparisons per successful search on the average.

There are ten possible ways that an un-successful search may terminate depending upon the value of \(x\).

If \(x<a[1], a[1]<x<a[2], a[2]<x<a[3], a[5]<x<a[6], a[6]<x<a[7]\) or \(a[7]<x<a[8]\) the algorithm requires 3 element comparisons to determine that ' \(x\) ' is not present. For all of the remaining possibilities BINSRCH requires 4 element comparisons. Thus the average number of element comparisons for an unsuccessful search is:
\[
(3+3+3+4+4+3+3+3+4+4) / 10=34 / 10=3.4
\]

The time complexity for a successful search is \(\mathrm{O}(\log n)\) and for an unsuccessful search is \(\Theta(\log n)\).

\section*{Successful searches}
\begin{tabular}{lll}
\(\Theta(1)\), & \(\Theta(\log n)\), & \(\Theta(\log n)\) \\
Best & average & worst
\end{tabular}

\section*{un-successful searches \\ \(\Theta(\log n)\) \\ best, average and worst}

\section*{Analysis for worst case}

Let \(T(n)\) be the time complexity of Binary search
The algorithm sets mid to [n+1/2]
Therefore,
\[
\begin{aligned}
T(0) & =0 & & \\
T(n) & =1 & & \text { if } x=a[m i d] \\
& =1+T([(n+1) / 2]-1) & & \text { if } x<a[m i d] \\
& =1+T(n-[(n+1) / 2]) & & \text { if } x>a[m i d]
\end{aligned}
\]

Let us restrict ' \(n\) ' to values of the form \(n=2^{k}-1\), where ' \(k\) ' is a non-negative integer. The array always breaks symmetrically into two equal pieces plus middle element.

Algebraically this is \(\lceil n+1\rceil=\left\lceil 2^{K}-1+1\right\rceil=2^{k-1} \quad\) for \(K>1\)

Giving,
\[
\begin{array}{lll}
\mathrm{T}(0) & =0 & \\
\mathrm{~T}\left(2^{\mathrm{k}}-1\right) & =1 & \text { if } \mathrm{x}=\mathrm{a} \text { [mid] } \\
& =1+\mathrm{T}\left(2^{\mathrm{k}-1}-1\right) & \text { if } \mathrm{x}<\mathrm{a} \text { [mid] } \\
& =1+\mathrm{T}\left(2^{\mathrm{k}-1}-1\right) & \text { if } \mathrm{x}>\mathrm{a} \text { [mid] }
\end{array}
\]

In the worst case the test \(x=a[m i d]\) always fails, so
\[
\begin{aligned}
& w(0)=0 \\
& w\left(2^{k}-1\right)=1+w\left(2^{k-1}-1\right)
\end{aligned}
\]

This is now solved by repeated substitution:
\[
\begin{aligned}
w\left(2^{k}-1\right) & =1+w\left(2^{k-1}-1\right) \\
& =1+\left[1+w\left(2^{k-2}-1\right)\right] \\
& =1+\left[1+\left[1+w\left(2^{k-3}-1\right)\right]\right] \\
& =\cdots \cdots \cdot \\
& =\cdots \cdots \cdots \\
& =i+w\left(2^{k-i}-1\right)
\end{aligned}
\]

For \(\mathrm{i} \leq \mathrm{k}\), letting \(\mathrm{i}=\mathrm{k}\) gives \(\mathrm{w}\left(2^{\mathrm{k}}-1\right)=\mathrm{K}+\mathrm{w}(0)=\mathrm{k}\)
But as \(2^{k}-1=n\), so \(K=\log _{2}(n+1)\), so
\[
w(n)=\log _{2}(n+1)=O(\log n)
\]
for \(n=2^{\mathrm{K}}-1\), concludes this analysis of binary search.
Although it might seem that the restriction of values of ' \(n\) ' of the form \(2^{k}-1\) weakens the result. In practice this does not matter very much, \(w(n)\) is a monotonic increasing function of ' \(n\) ', and hence the formula given is a good approximation even when ' \(n\) ' is not of the form \(2^{k}-1\).

\section*{External and Internal path length:}

The lines connecting nodes to their non-empty sub trees are called edges. A nonempty binary tree with \(n\) nodes has \(n-1\) edges. The size of the tree is the number of nodes it contains.

When drawing binary trees, it is often convenient to represent the empty sub trees explicitly, so that they can be seen. For example:

(d)

The tree given above in which the empty sub trees appear as square nodes is as follows:

The square nodes are called as external nodes \(E(T)\). The square node version is sometimes called an extended binary tree. The round nodes are called internal nodes \(\mathrm{I}(\mathrm{T})\). A binary tree with n internal nodes has \(\mathrm{n}+1\) external nodes.

The height \(h(x)\) of node ' \(x\) ' is the number of edges on the longest path leading down from ' \(x\) ' in the extended tree. For example, the following tree has heights written inside its nodes:

The depth \(d(x)\) of node ' \(x\) ' is the number of edges on path from the root to ' \(x\) '. It is the number of internal nodes on this path, excluding ' \(x\) ' itself. For example, the following tree has depths written inside its nodes:

The internal path length \(I(T)\) is the sum of the depths of the internal nodes of ' \(T\) ':
\[
\mathrm{I}(\mathrm{~T})=\sum_{x \in I(T)} d(x)
\]

The external path length \(E(T)\) is the sum of the depths of the external nodes:
\[
\mathrm{E}(\mathrm{~T})=\sum_{x \in E(T)} d(x)
\]

For example, the tree above has \(I(T)=4\) and \(E(T)=12\).
A binary tree \(T\) with ' \(n\) ' internal nodes, will have \(I(T)+2 n=E(T)\) external nodes.
A binary tree corresponding to binary search when \(n=16\) is

External square nodes, which lead for unsuccessful search.
Let \(C_{N}\) be the average number of comparisons in a successful search.
\(C^{\prime} \mathrm{N}\) be the average number of comparison in an un successful search.

Then we have,
\[
\begin{aligned}
& \mathrm{C}_{\mathrm{N}}=1+\frac{\text { internal pathlengthoftree }}{\mathrm{N}} \\
& \mathrm{C}^{\prime} \mathrm{N}=\frac{\text { External path length of tree }}{\mathrm{N}+1} \\
& \mathrm{C}_{\mathrm{N}}=\left(\begin{array}{ll}
1 & \frac{1}{\mathrm{~N}}
\end{array}\right) \mathrm{C}^{\prime}{ }_{\mathrm{N}}-1
\end{aligned}
\]

External path length is always 2 N more than the internal path length.

\section*{Merge Sort}

Merge sort algorithm is a classic example of divide and conquer. To sort an array, recursively, sort its left and right halves separately and then merge them. The time complexity of merge mort in the best case, worst case and average case is \(\mathrm{O}(\mathrm{n} \log \mathrm{n})\) and the number of comparisons used is nearly optimal.

This strategy is so simple, and so efficient but the problem here is that there seems to be no easy way to merge two adjacent sorted arrays together in place (The result must be build up in a separate array).

The fundamental operation in this algorithm is merging two sorted lists. Because the lists are sorted, this can be done in one pass through the input, if the output is put in a third list.

The basic merging algorithm takes two input arrays 'a' and ' b ', an output array ' \(c\) ', and three counters, \(a\) ptr, \(b\) ptr and \(c\) ptr, which are initially set to the beginning of their respective arrays. The smaller of \(a[a \operatorname{ptr}]\) and \(b[b \operatorname{ptr}]\) is copied to the next entry in ' C ', and the appropriate counters are advanced. When either input list is exhausted, the remainder of the other list is copied to ' \(c\) '.

To illustrate how merge process works. For example, let us consider the array 'a' containing 1, 13, 24, 26 and ' \(b\) ' containing 2, 15, 27, 38 . First a comparison is done between 1 and 2.1 is copied to ' \(c\) '. Increment a ptr and \(c\) ptr.
\begin{tabular}{|c|c|c|c|}
\hline 1 & 2 & 3 & 4 \\
\hline 1 & 13 & 24 & 26 \\
\hline \begin{tabular}{c}
\(h\) \\
\(p t r\)
\end{tabular} & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 5 & 6 & 7 & 8 \\
\hline 2 & 15 & 27 & 28 \\
\hline \begin{tabular}{c}
j
\end{tabular} & & & \\
\(p t r\) & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline 1 & & & & & & & \\
\hline \begin{tabular}{c}
ptr
\end{tabular} & & & & & & & \\
\hline
\end{tabular}
and then 2 and 13 are compared. 2 is added to ' \(c\) '. Increment \(b\) ptr and \(c\) ptr.
\begin{tabular}{|c|c|c|c|}
\hline 1 & 2 & 3 & 4 \\
\hline 1 & 13 & 24 & 26 \\
\hline & \(h\) & & \\
& \(p t r\) & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 5 & 6 & 7 & 8 \\
\hline 2 & 15 & 27 & 28 \\
\hline \begin{tabular}{c}
\(j\) \\
\(p t r\)
\end{tabular} & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline 1 & 2 & & & & & & \\
\hline & \begin{tabular}{c}
\(i\) \\
\(p t r\)
\end{tabular} & & & & & & \\
\hline
\end{tabular}
then 13 and 15 are compared. 13 is added to ' \(\mathrm{c}^{\prime}\). Increment a ptr and c ptr.
\begin{tabular}{|c|c|c|c|}
\hline 1 & 2 & 3 & 4 \\
\hline 1 & 13 & 24 & 26 \\
\hline & \begin{tabular}{c}
\(h\) \\
ptr
\end{tabular} & & \\
&
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 5 & 6 & 7 & 8 \\
\hline 2 & 15 & 27 & 28 \\
\hline & \begin{tabular}{c}
\(j\) \\
ptr
\end{tabular} & & \\
&
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline 1 & 2 & 13 & & & & & \\
\hline & & \begin{tabular}{c}
\(i\) \\
\(p t r\)
\end{tabular} & & & & & \\
& & & & & &
\end{tabular}

24 and 15 are compared. 15 is added to \({ }^{\prime} c^{\prime}\). Increment \(b\) ptr and \(c\) ptr.
\begin{tabular}{|c|c|c|c|}
\hline 1 & 2 & 3 & 4 \\
\hline 1 & 13 & 24 & 26 \\
\hline & & \begin{tabular}{c}
\(h\) \\
ptr
\end{tabular} & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 5 & 6 & 7 & 8 \\
\hline 2 & 15 & 27 & 28 \\
\hline & \(j\) & & \\
& ptr & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline 1 & 2 & 13 & 15 & & & & \\
\hline & & & \begin{tabular}{c}
\(i\) \\
\(p t r\)
\end{tabular} & & & & \\
\hline
\end{tabular}

24 and 27 are compared. 24 is added to 'c'. Increment a ptr and cptr.
\begin{tabular}{|c|c|c|c|}
\hline 1 & 2 & 3 & 4 \\
\hline 1 & 13 & 24 & 26 \\
\hline & & \begin{tabular}{c}
\(h\) \\
ptr
\end{tabular} & \\
& &
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 5 & 6 & 7 & 8 \\
\hline 2 & 15 & 27 & 28 \\
\hline & & \begin{tabular}{c}
\(j\) \\
ptr
\end{tabular} & \\
& &
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline 1 & 2 & 13 & 15 & 24 & & & \\
\hline & & & & \begin{tabular}{c}
\(i\) \\
ptr
\end{tabular} & & & \\
& & & & & &
\end{tabular}

26 and 27 are compared. 26 is added to ' \(c^{\prime}\). Increment a ptr and cptr.
\begin{tabular}{|c|c|c|c|}
\hline 1 & 2 & 3 & 4 \\
\hline 1 & 13 & 24 & 26 \\
\hline & & & \begin{tabular}{c}
\(h\) \\
\(p t r\)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 5 & 6 & 7 & 8 \\
\hline 2 & 15 & 27 & 28 \\
\hline & & \begin{tabular}{c}
\(j\) \\
\(p t r\)
\end{tabular} & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline 1 & 2 & 13 & 15 & 24 & 26 & & \\
\hline & & & & & \begin{tabular}{c}
\(i\) \\
\(p t r\)
\end{tabular} & & \\
\hline
\end{tabular}

As one of the lists is exhausted. The remainder of the \(b\) array is then copied to ' \(\mathrm{c}^{\prime}\).
\begin{tabular}{|c|c|c|c|}
\hline 1 & 2 & 3 & 4 \\
\hline 1 & 13 & 24 & 26 \\
\hline & & & \\
& & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 5 & 6 & 7 & 8 \\
\hline & 2 & 15 & 27 & 28 \\
\cline { 2 - 5 } \\
ptr & & & \begin{tabular}{c}
\(j\) \\
ptr
\end{tabular} &
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline 1 & 2 & 13 & 15 & 24 & 26 & 27 & 28 \\
\hline & & & & & & & \\
& & & & & & & \\
i \\
ptr
\end{tabular}

\section*{Algorithm}

\section*{Algorithm MERGESORT (low, high)}

\section*{// a (low : high) is a global array to be sorted.}
\{
```

    if (low < high)
    mid := |(low + high)/2| //finds where to split the set
    MERGESORT(low, mid) //sort one subset
    MERGESORT(mid+1, high) //sort the other subset
    MERGE(low, mid, high) // combine the results
    }
    ```
\}
```

Algorithm MERGE (low, mid, high)
// a (low : high) is a global array containing two sorted subsets
// in a (low : mid) and in a (mid +1 : high).
// The objective is to merge these sorted sets into single sorted
// set residing in a (low : high). An auxiliary array B is used.
\{
h :=low; i := low; j:= mid + 1;
while ( $\mathrm{h} \leq \mathrm{mid}$ ) and ( $\mathrm{J} \leq$ high $)$ ) do
\{
if $(a[h] \leq a[j])$ then
\{
$\mathrm{b}[\mathrm{i}]:=\mathrm{a}[\mathrm{h}] ; \mathrm{h}:=\mathrm{h}+1$;
\}
else
\{
$\mathrm{b}[\mathrm{i}]:=\mathrm{a}[\mathrm{j}] ; \mathrm{j}:=\mathrm{j}+1$;
\}
$i:=i+1 ;$
\}
if ( $\mathrm{h}>\mathrm{mid}$ ) then
for $k:=j$ to high do
\{
$\mathrm{b}[\mathrm{i}]:=\mathrm{a}[\mathrm{k}] ; \mathrm{i}:=\mathrm{i}+1$;
\}
else
for $\mathrm{k}:=\mathrm{h}$ to mid do
\{
b[i]:= a[K]; i:= i + ;
\}
for $\mathrm{k}:=$ low to high do
$\mathrm{a}[\mathrm{k}]:=\mathrm{b}[\mathrm{k}]$;
\}

```

\section*{Example}

For example let us select the following 8 entries \(7,2,9,4,3,8,6,1\) to illustrate merge sort algorithm:

\section*{Tree Calls of MERGESORT(1, 8)}

The following figure represents the sequence of recursive calls that are produced by MERGESORT when it is applied to 8 elements. The values in each node are the values of the parameters low and high.

\section*{Tree Calls of MERGE()}

The tree representation of the calls to procedure MERGE by MERGESORT is as follows:

\section*{Analysis of Merge Sort}

We will assume that ' \(n\) ' is a power of 2 , so that we always split into even halves, so we solve for the case \(n=2^{k}\).

For \(\mathrm{n}=1\), the time to merge sort is constant, which we will be denote by 1 . Otherwise, the time to merge sort ' \(n\) ' numbers is equal to the time to do two recursive merge sorts of size \(n / 2\), plus the time to merge, which is linear. The equation says this exactly:
\[
\begin{aligned}
& T(1)=1 \\
& T(n)=2 T(n / 2)+n
\end{aligned}
\]

This is a standard recurrence relation, which can be solved several ways. We will solve by substituting recurrence relation continually on the right-handside.

We have, \(T(n)=2 T(n / 2)+n\)

Since we can substitute \(\mathrm{n} / 2\) into this main equation
\[
\begin{aligned}
2 T(n / 2) & =2(2(T(n / 4))+n / 2) \\
& =4 T(n / 4)+n
\end{aligned}
\]

We have,
\[
\begin{array}{lll}
\mathrm{T}(\mathrm{n} / 2) & = & 2 \mathrm{~T}(\mathrm{n} / 4)+n \\
\mathrm{~T}(\mathrm{n}) & = & 4 \mathrm{~T}(\mathrm{n} / 4)+2 n
\end{array}
\]

Again, by substituting \(n / 4\) into the main equation, we see that
\[
4 \mathrm{~T}(\mathrm{n} / 4)=4(2 \mathrm{~T}(\mathrm{n} / 8))+\mathrm{n} / 4
\]
\[
=8 \mathrm{~T}(\mathrm{n} / 8)+\mathrm{n}
\]

So we have,
\[
\begin{array}{lll}
\mathrm{T}(\mathrm{n} / 4) & = & 2 \mathrm{~T}(\mathrm{n} / 8)+n \\
\mathrm{~T}(\mathrm{n}) & = & 8 \mathrm{~T}(\mathrm{n} / 8)+3 n
\end{array}
\]

Continuing in this manner, we obtain:
\[
T(n) \quad=\quad 2^{k} T\left(n / 2^{k}\right)+K . n
\]

As \(n=2^{k}, K=\log _{2} n\), substituting this in the above equation
\[
\begin{aligned}
T(n)= & \left.2^{\log _{2} n} \frac{\left(\frac{R^{k} \mid}{2}\right)}{2}\right) \quad \log _{2} n \cdot n \\
& =n T(1)+n \log n \\
& =n \log n+n
\end{aligned}
\]

Representing this in O notation:
\[
T(n)=\mathbf{O}(\mathbf{n} \log \mathbf{n})
\]

We have assumed that \(n=2^{k}\). The analysis can be refined to handle cases when ' \(n\) ' is not a power of 2 . The answer turns out to be almost identical.

Although merge sort's running time is \(\mathrm{O}(\mathrm{n} \log \mathrm{n})\), it is hardly ever used for main memory sorts. The main problem is that merging two sorted lists requires linear extra memory and the additional work spent copying to the temporary array and back, throughout the algorithm, has the effect of slowing down the sort considerably. The Best and worst case time complexity of Merge sort is \(O(n \log n)\).

\section*{Strassen's Matrix Multiplication:}

The matrix multiplication of algorithm due to Strassens is the most dramatic example of divide and conquer technique (1969).

The usual way to multiply two \(\mathrm{n} \times \mathrm{n}\) matrices A and B , yielding result matrix ' \(\mathrm{C}^{\prime}\) as follows:
```

for i:= 1 to n do
for j:=1 to n do
c[i, j]:= 0;
for K: = 1 to n do
c[i,j] := c[i, j] + a[i, k] * b[k, j];

```

This algorithm requires \(n^{3}\) scalar multiplication's (i.e. multiplication ofsingle numbers) and \(\mathrm{n}^{3}\) scalar additions. So we naturally cannot improve upon.

We apply divide and conquer to this problem. For example let us considers three multiplication like this:
\(\left.\left(\begin{array}{ll}A_{11} & A_{12} \\ A_{21} & A_{22}\end{array}\right) \quad\left|\begin{array}{ll}\left(B_{11}\right. & B_{12} \\ B_{21} & B\end{array}\right| \begin{array}{ll}\mathrm{C}_{11} & C_{12} \\ C_{22} & C_{22}\end{array}\right)\)

Then \(\mathrm{c}_{\mathrm{ij}}\) can be found by the usual matrix multiplication algorithm,
\[
\begin{aligned}
& \mathrm{C}_{11}=\mathrm{A}_{11} \cdot \mathrm{~B}_{11}+\mathrm{A}_{12} \cdot \mathrm{~B}_{21} \\
& \mathrm{C}_{12}=\mathrm{A}_{11} \cdot \mathrm{~B}_{12}+\mathrm{A}_{12} \cdot \mathrm{~B}_{22} \\
& \mathrm{C}_{21}=\mathrm{A}_{21} \cdot \mathrm{~B}_{11}+\mathrm{A}_{22} \cdot \mathrm{~B}_{21} \\
& \mathrm{C}_{22}=\mathrm{A}_{21} \cdot \mathrm{~B}_{12}+\mathrm{A}_{22} \cdot \mathrm{~B}_{22}
\end{aligned}
\]

This leads to a divide-and-conquer algorithm, which performs nxn matrix multiplication by partitioning the matrices into quarters and performing eight \((n / 2) x(n / 2)\) matrix multiplications and four (\(n / 2\)) \(x(n / 2)\) matrix additions.
```

T(1) = 1
T(n) = 8T(n/2)

```

Which leads to \(T(n)=O\left(n^{3}\right)\), where \(n\) is the power of 2 .
Strassens insight was to find an alternative method for calculating the \(C_{i j}\), requiring seven (\(n / 2\)) \(x(n / 2)\) matrix multiplications and eighteen (\(n / 2\)) \(x(n / 2)\) matrix additions and subtractions:
\[
\begin{aligned}
& \mathrm{P}=\left(\mathrm{A}_{11}+\mathrm{A}_{22}\right)\left(\mathrm{B}_{11}+\mathrm{B}_{22}\right) \\
& \mathrm{Q}=\left(\mathrm{A}_{21}+\mathrm{A}_{22}\right) \mathrm{B}_{11} \\
& \mathrm{R}=\mathrm{A}_{11}\left(\mathrm{~B}_{12}-\mathrm{B}_{22}\right) \\
& \mathrm{S}=\mathrm{A}_{22}\left(\mathrm{~B}_{21}-B_{11}\right) \\
& \mathrm{T}=\left(\mathrm{A}_{11}+\mathrm{A}_{12}\right) \mathrm{B}_{22} \\
& \mathrm{U}=\left(\mathrm{A}_{21}-A_{11}\right)\left(\mathrm{B}_{11}+\mathrm{B}_{12}\right) \\
& \mathrm{V}=\left(\mathrm{A}_{12}-A_{22}\right)\left(B_{21}+B_{22}\right) \\
& C_{11}=P+S-T+V \\
& C_{12}=\mathrm{R}+\mathrm{T} \\
& C_{21}=\mathrm{Q}+\mathrm{S} \\
& C_{22}=P+R-Q+U .
\end{aligned}
\]

This method is used recursively to perform the seven (\(n / 2\)) \(x(n / 2)\) matrix multiplications, then the recurrence equation for the number of scalar multiplications performed is:
```

T(1) = 1
T(n) = 7T(n/2)

```

Solving this for the case of \(n=2^{k}\) is easy:
\[
\begin{aligned}
\mathrm{T}\left(2^{\mathrm{k}}\right) & =7 \mathrm{~T}\left(2^{\mathrm{k}-1}\right) \\
& =7^{2} \mathrm{~T}\left(2^{\mathrm{k}-2}\right) \\
& =-\cdots- \\
& =---\cdots \\
& =7^{\mathrm{i} T\left(2^{k-1}\right)} \\
\text { Put } \mathrm{i}=\mathrm{k} & \\
& =7^{\mathrm{k}} \mathrm{~T}(1) \\
& =7^{\mathrm{k}} \\
\text { That is, } \mathrm{T}(\mathrm{n}) & =7^{\log _{2} n} \\
& =n^{\log _{2} 7} \\
& =O\left(n^{\log _{2} 7}\right)=O\left(n^{81}\right)
\end{aligned}
\]

So, concluding that Strassen's algorithm is asymptotically more efficient than the standard algorithm. In practice, the overhead of managing the many small matrices does not pay off until ' \(n\) ' revolves the hundreds.

\section*{Quick Sort}

The main reason for the slowness of Algorithms like SIS is that all comparisons and exchanges between keys in a sequence \(\mathrm{w}_{1}, \mathrm{w}_{2}\), , \(\mathrm{w}_{\mathrm{n}}\) take place between adjacent pairs. In this way it takes a relatively long time for a key that is badly out of place to work its way into its proper position in the sorted sequence.

Hoare his devised a very efficient way of implementing this idea in the early 1960's that improves the \(O\left(n^{2}\right)\) behavior of SIS algorithm with an expected performance that is \(O(n \log n)\).

In essence, the quick sort algorithm partitions the original array by rearranging it into two groups. The first group contains those elements less than some arbitrary chosen value taken from the set, and the second group contains those elements greater than or equal to the chosen value.

The chosen value is known as the pivot element. Once the array has been rearranged in this way with respect to the pivot, the very same partitioning is recursively applied to each of the two subsets. When all the subsets have been partitioned and rearranged, the original array is sorted.

The function partition() makes use of two pointers ' i ' and ' j ' which are moved toward each other in the following fashion:
- Repeatedly increase the pointer ' i ' until \(\mathrm{a}[\mathrm{i}]\) > = pivot.
- Repeatedly decrease the pointer ' j ' until \(\mathrm{a}[\mathrm{j}]\) <= pivot.
- If \(\mathrm{j}>\mathrm{i}\), interchange \(\mathrm{a}[\mathrm{j}]\) with \(\mathrm{a}[\mathrm{i}]\)
- Repeat the steps 1,2 and 3 till the ' \(i\) ' pointer crosses the ' j ' pointer. If ' i ' pointer crosses ' j ' pointer, the position for pivot is found and place pivot element in ' j ' pointer position.

The program uses a recursive function quicksort(). The algorithm of quick sort function sorts all elements in an array 'a' between positions 'low' and 'high'.
- It terminates when the condition low \(>=\) high is satisfied. This condition will be satisfied only when the array is completely sorted.
- Here we choose the first element as the 'pivot'. So, pivot = x[low]. Now it calls the partition function to find the proper position j of the element \(x[\) low \(]\) i.e. pivot. Then we will have two sub-arrays \(x[l o w], x[l o w+1], \ldots\) \(\ldots x[j-1]\) and \(x[j+1], x[j+2], \ldots x[h i g h]\).
- It calls itself recursively to sort the left sub-array \(x[l o w], x[l o w+1], \ldots .\). . . \(x[j-1]\) between positions low and \(j-1\) (where j is returned by the partition function).
- It calls itself recursively to sort the right sub-array \(x[j+1], x[j+2], \ldots .\). . . . x[high] between positions \(\mathrm{j}+1\) and high.

\section*{Algorithm Algorithm}

\section*{QUICKSORT(low, high)}
/* sorts the elements a(low), , a(high) which reside in the global array \(\mathrm{A}(1\) : \(n\)) into ascending order a \((n+1)\) is considered to be defined and must be greater than all elements in \(\mathrm{a}(1: \mathrm{n}) ; \mathrm{A}(\mathrm{n}+1)=+\propto^{*} /\)
\{
if low < high then
\{
j := PARTITION(a, low, high+1);
\(/ / \mathrm{J}\) is the position of the partitioning element
QUICKSORT(Iow, j-1);
QUICKSORT(j + 1 , high);
\}
\}
```

Algorithm PARTITION(a,m, p)
{
V}\leftarrowa(m);i\leftarrowm;j<p; // A (m) is the partition elemen
do
{
loop i := i + 1 until a(i)\geqv // i moves left to right
loop j := j - 1 until a(j) <v v // p moves right to left
if (i < j) then INTERCHANGE(a, i, j)
} while (i \geqj);
a[m]:=a[j];a[j]:=V;// the partition element belongs at position P
return j;
}

```

\section*{Algorithm INTERCHANGE(\(a, i, j)\)}
\{
\[
\mathrm{P}:=\mathrm{a}[\mathrm{i}] ;
\]
\[
a[i]:=a[j] ;
\]
\[
\mathrm{a}[\mathrm{j}]:=\mathrm{p} ;
\]
\}

\section*{Example}

Select first element as the pivot element. Move ' \(i\) ' pointer from left to right in search of an element larger than pivot. Move the ' \(j\) ' pointer from right to left in search of an element smaller than pivot. If such elements are found, the elements are swapped. This process continues till the ' \(i\) ' pointer crosses the ' \(j\) ' pointer. If ' \(i\) ' pointer crosses ' \(j\) ' pointer, the position for pivot is found and interchange pivot and element at ' j ' position.

Let us consider the following example with 13 elements to analyze quick sort:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & Remarks \\
\hline 38 & 08 & 16 & 06 & 79 & 57 & 24 & 56 & 02 & 58 & 04 & 70 & 45 & \\
\hline pivot & & & & i & & & & & & j & & & swap i \& j \\
\hline & & & & 04 & & & & & & 79 & & & \\
\hline & & & & & i & & & j & & & & & swap i \& j \\
\hline & & & & & 02 & & & 57 & & & & & \\
\hline & & & & & & j & i & & & & & & \\
\hline (24 & 08 & 16 & 06 & 04 & 02) & 38 & (56 & 57 & 58 & 79 & 70 & 45) & swap pivot \& j \\
\hline pivot & & & & & j, i & & & & & & & & swap pivot \& \\
\hline (02 & 08 & 16 & 06 & 04) & 24 & & & & & & & & \\
\hline \[
\begin{gathered}
\text { pivot, } \\
j
\end{gathered}
\] & i & & & & & & & & & & & & swap pivot
\(\& \mathrm{j}\) \\
\hline 02 & (08 & 16 & 06 & 04) & & & & & & & & & \\
\hline & pivot & i & & j & & & & & & & & & swap i \& j \\
\hline & & 04 & & 16 & & & & & & & & & \\
\hline & & & j & i & & & & & & & & & \\
\hline & (06 & 04) & 08 & (16) & & & & & & & & & \[
\begin{array}{|c|}
\text { swap pivot } \\
\& j \\
\hline
\end{array}
\] \\
\hline & pivot, j & i & & & & & & & & & & & \\
\hline & (04) & 06 & & & & & & & & & & & \[
\begin{array}{|c|}
\hline \text { swap pivot } \\
\& j \\
\hline
\end{array}
\] \\
\hline & 04 pivot, j, i & & & & & & & & & & & & \\
\hline & & & & 16 pivot, j, i & & & & & & & & & \\
\hline (02 & 04 & 06 & 08 & 16 & 24) & 38 & & & & & & & \\
\hline & & & & & & & (56 & 57 & 58 & 79 & 70 & 45) & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & & & & & pivot & i & & & & j & swap i \& j \\
\hline & & & & & & & & 45 & & & & 57 & \\
\hline & & & & & & & & j & i & & & & \\
\hline & & & & & & & (45) & 56 & (58 & 79 & 70 & 57) & swap pivot \& \({ }^{\text {j }}\) \\
\hline & & & & & & & 45 pivot, j, i & & & & & & swap pivot \& j \\
\hline & & & & & & & & & \[
\begin{aligned}
& (58 \\
& \text { pivot }
\end{aligned}
\] & \[
\begin{gathered}
79 \\
i
\end{gathered}
\] & 70 & \[
\begin{gathered}
\text { 57) } \\
\mathrm{j}
\end{gathered}
\] & swap i \& j \\
\hline & & & & & & & & & & 57 & & 79 & \\
\hline & & & & & & & & & & j & i & & \\
\hline & & & & & & & & & (57) & 58 & (70 & 79) & swap pivot \& \({ }^{1}\) \\
\hline & & & & & & & & & \begin{tabular}{l}
57 \\
pivot, j, i
\end{tabular} & & & & \\
\hline & & & & & & & & & & & (70 & 79) & \\
\hline & & & & & & & & & & & \[
\begin{array}{|c|}
\hline \text { pivot, } \\
\mathrm{j}
\end{array}
\] & i & swap pivot
\(\& \mathrm{j}\) \\
\hline & & & & & & & & & & & 70 & & \\
\hline & & & & & & & & & & & & 79 pivot, j, i & \\
\hline & & & & & & & (45 & 56 & 57 & 58 & 70 & 79) & \\
\hline 02 & 04 & 06 & 08 & 16 & 24 & 38 & 45 & 56 & 57 & 58 & 70 & 79 & \\
\hline
\end{tabular}

\section*{Analysis of Quick Sort:}

Like merge sort, quick sort is recursive, and hence its analysis requires solving a recurrence formula. We will do the analysis for a quick sort, assuming a random pivot (and no cut off for small files).

We will take \(\mathrm{T}(0)=\mathrm{T}(1)=1\), as in merge sort.
The running time of quick sort is equal to the running time of the two recursive calls plus the linear time spent in the partition (The pivot selection takes only constant time). This gives the basic quick sort relation:
\[
\begin{equation*}
T(n)=T(i)+T(n-i-1)+C n \tag{1}
\end{equation*}
\]

Where, \(\mathrm{i}=\left|\mathrm{S}_{1}\right|\) is the number of elements in \(\mathrm{S}_{1}\).

\section*{Worst Case Analysis}

The pivot is the smallest element, all the time. Then \(\mathrm{i}=0\) and if we ignore \(\mathrm{T}(0)=1\), which is insignificant, the recurrence is:
\[
\begin{equation*}
\mathrm{T}(\mathrm{n})=\mathrm{T}(\mathrm{n}-1)+\mathrm{C} \mathrm{n} \quad \mathrm{n}>1 \quad- \tag{2}
\end{equation*}
\]

Using equation - (1) repeatedly, thus
```

$T(n-1)=T(n-2)+C(n-1)$
$T(n-2)=T(n-3)+C(n-2)$

```
T (2) \(=\mathrm{T}(1)+\mathrm{C}(2)\)

Adding up all these equations yields
\[
\begin{align*}
T(n) & =T(1)+\sum_{i=2}^{n} i \\
& =\mathbf{O} \quad\left(\mathbf{n}^{2}\right) \tag{3}
\end{align*}
\]

\section*{Best Case Analysis}

In the best case, the pivot is in the middle. To simply the math, we assume that the two sub-files are each exactly half the size of the original and although this gives a slight over estimate, this is acceptable because we are only interested in a Big - oh answer.
\(\mathrm{T}(\mathrm{n})=2 \mathrm{~T}(\mathrm{n} / 2)+\mathrm{Cn}\)
Divide both sides by n
\[
\begin{equation*}
\frac{T(n)}{n}=\frac{T(n / 2)}{n / 2}+C \tag{5}
\end{equation*}
\]

Substitute \(\mathrm{n} / 2\) for ' n ' in equation (5)
\[
\begin{equation*}
\frac{T(n / 2)}{n / 2}=\frac{T(n / 4)}{n / 4}+C \tag{6}
\end{equation*}
\]

Substitute \(\mathrm{n} / 4\) for ' n ' in equation (6)
\[
\begin{equation*}
\frac{T(n / 4)}{n / 4}=\frac{T(n / 8)}{n / 8}+C \tag{7}
\end{equation*}
\]

Continuing in this manner, we obtain:
\[
\begin{equation*}
\frac{T(2)}{2}=\frac{T(1)}{1}+C \tag{8}
\end{equation*}
\]

We add all the equations from 4 to 8 and note that there are \(\log \mathrm{n}\) of them:
\[
\begin{equation*}
\frac{T(n)}{n}=\frac{T(1)}{1}+C \log n \tag{9}
\end{equation*}
\]

Which yields, \(T(n)=C n \log n+n=\mathbf{O}(\mathbf{n} \log \mathbf{n}) \quad-\)
This is exactly the same analysis as merge sort, hence we get the same answer.

\section*{Average Case Analysis}

The number of comparisons for first call on partition: Assume left_to_right moves over \(k\) smaller element and thus \(k\) comparisons. So when right_to_left crosses left_to_right it has made \(n-k+1\) comparisons. So, first call on partition makes \(n+1\) comparisons. The average case complexity of quicksort is
\(T(n)=\) comparisons for first call on quicksort
\(\{\Sigma 1<=\) nleft, nright \(<=n[T(n l e f t)+T(n r i g h t)]\} n=(n+1)+2[T(0)+T(1)+T(2)+\) ----- \(+T(n-1)] / n\)
\(n T(n)=n(n+1)+2[T(0)+T(1)+T(2)+\cdots+--+T(n-2)+T(n-1)]\)
\((n-1) T(n-1)=(n-1) n+2[T(0)+T(1)+T(2)+\cdots+---T(n-2)] \backslash\)
Subtracting both sides:
```

$n T(n)-(n-1) T(n-1)=[n(n+1)-(n-1) n]+2 T(n-1)=2 n+2 T(n-1)$
$n T(n)=2 n+(n-1) T(n-1)+2 T(n-1)=2 n+(n+1) T(n-1)$
$T(n)=2+(n+1) T(n-1) / n$

```
The recurrence relation obtained is:
\(T(n) /(n+1)=2 /(n+1)+T(n-1) / n\)

Using the method of subsititution:
\begin{tabular}{lll}
\(T(n) /(n+1)\) & \(=\) & \(2 /(n+1)+T(n-1) / n\) \\
\(T(n-1) / n\) & \(=\) & \(2 / n+T(n-2) /(n-1)\) \\
\(T(n-2) /(n-1)\) & \(=\) & \(2 /(n-1)+T(n-3) /(n-2)\) \\
\(T(n-3) /(n-2)\) & \(=\) & \(2 /(n-2)+T(n-4) /(n-3)\) \\
\(\cdot\) & & \(\cdot\) \\
\(\cdot\) & & \(2 / 4+T(2) / 3\) \\
\(T(3) / 4\) & \(=\) & \(2 / 3+T(1) / 2 T(1) / 2=2 / 2+T(0)\)
\end{tabular}

\section*{Adding both sides:}
\(T(n) /(n+1)+[T(n-1) / n+T(n-2) /(n-1)+\cdots-\cdots---\cdots+---T(2) / 3+T(1) / 2]\)
\(=[T(n-1) / n+T(n-2) /(n-1)+\cdots-\cdots-\cdots+---+T(2) / 3+T(1) / 2]+T(0)+\)
\([2 /(n+1)+2 / n+2 /(n-1)+\cdots-------+2 / 4+2 / 3]\)
Cancelling the common terms:
```

$T(n) /(n+1)=2[1 / 2+1 / 3+1 / 4+------------+1 / n+1 /(n+1)]$
$\mathrm{T}(\mathrm{n})=(\mathrm{n}+1) 2\left[\sum_{2 \leq k \leq n+1} 1 / k\right.$
$=2(n+1)[-]$
$=2(n+1)[\log (n+1)-\log 2]$
$=2 n \log (n+1)+\log (n+1)-2 n \log 2-\log 2$
$T(n)=O(n \log n)$

```

\subsection*{3.8. Straight insertion sort:}

Straight insertion sort is used to create a sorted list (initially list is empty) and at each iteration the top number on the sorted list is removed and put into its proper
place in the sorted list. This is done by moving along the sorted list, from the smallest to the largest number, until the correct place for the new number is located i.e. until all sorted numbers with smaller values comes before it and all those with larger values comes after it. For example, let us consider the following 8 elements for sorting:
\begin{tabular}{|l|c|c|c|c|c|c|c|c|}
\hline Index & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Elements & 27 & 412 & 71 & 81 & 59 & 14 & 273 & 87 \\
\hline
\end{tabular}

\section*{Solution:}
\begin{tabular}{llllllllll}
Iteration 0: & unsorted \\
Sorted
\end{tabular} \begin{tabular}{llllllll}
412 & 71 & 81 & 59 & 14 & 273 & 87 \\
Iteration 1: & unsorted & 412 & 71 & 81 & 59 & 14 & 273 \\
& Sorted & 27 & 412 & & & & \\
\hline
\end{tabular}

\section*{UNIT 3}

\title{
Greedy Method
}

\section*{GENERAL METHOD}

Greedy is the most straight forward design technique. Most of the problems have \(n\) inputs and require us to obtain a subset that satisfies some constraints. Any subset that satisfies these constraints is called a feasible solution. We need to find a feasible solution that either maximizes or minimizes the objective function. A feasible solution that does this is called an optimal solution.

The greedy method is a simple strategy of progressively building up a solution, one element at a time, by choosing the best possible element at each stage. At each stage, a decision is made regarding whether or not a particular input is in an optimal solution. This is done by considering the inputs in an order determined by some selection procedure. If the inclusion of the next input, into the partially constructed optimal solution will result in an infeasible solution then this input is not added to the partial solution. The selection procedure itself is based on some optimization measure. Several optimization measures are plausible for a given problem. Most of them, however, will result in algorithms that generate sub-optimal solutions. This version of greedy technique is called subset paradigm. Some problems like Knapsack, Job sequencing with deadlines and minimum cost spanning trees are based on subset paradigm.

For the problems that make decisions by considering the inputs in some order, each decision is made using an optimization criterion that can be computed using decisions already made. This version of greedy method is ordering paradigm. Some problems like optimal storage on tapes, optimal merge patterns and single source shortest path are based on ordering paradigm.

\section*{CONTROL ABSTRACTION}
```

Algorithm Greedy (a, n)
// a(1:n) contains the 'n' inputs
{
solution := ; // initialize the solution to empty
for i:=1 to n do
{
x := select (a);
if feasible (solution, x) then
solution := Union (Solution, x);
}
return solution;
}

```

Procedure Greedy describes the essential way that a greedy based algorithm will look, once a particular problem is chosen and the functions select, feasible and union are properly implemented.

The function select selects an input from ' \(a\) ', removes it and assigns its value to ' \(x\) '. Feasible is a Boolean valued function, which determines if ' \(x\) ' can be included into the solution vector. The function Union combines ' \(x\) ' with solution and updates the objective function.

\section*{KNAPSACK PROBLEM}

Let us apply the greedy method to solve the knapsack problem. We are given ' \(n\) ' objects and a knapsack. The object 'i' has a weight \(w_{i}\) and the knapsack has a capacity ' \(m\) '. If a fraction \(x_{i}, 0<x_{i}<1\) of object \(i\) is placed into the knapsack then a profit of \(p_{i}\) \(x_{i}\) is earned. The objective is to fill the knapsack that maximizes the total profit earned.

Since the knapsack capacity is 'm', we require the total weight of all chosen objects to be at most ' \(m\) '. The problem is stated as:

The profits and weights are positive numbers.

\section*{Algorithm}

If the objects are already been sorted into non-increasing order of \(p[i] / w[i]\) then the algorithm given below obtains solutions corresponding to this strategy.

\section*{Algorithm GreedyKnapsack (m, n)}
// \(\mathrm{P}[1: \mathrm{n}]\) and \(\mathrm{w}[1: \mathrm{n}]\) contain the profits and weights respectively of
// Objects ordered so that \(p[i] / w[i]>p[i+1] / w[i+1]\).
// \(m\) is the knapsack size and \(x[1: n]\) is the solution vector.
\{
for \(\mathrm{i}:=1\) to n do \(\mathrm{x}[\mathrm{i}]:=0.0 \quad / /\) initialize x
U := m;
for \(\mathrm{i}:=1\) to n do
\{
if \((\mathrm{w}(\mathrm{i})>\mathrm{U})\) then break;
\(x[i]:=1.0 ; U:=U-w[i]\);
\}
if \((i \leq n)\) then \(x[i]:=U / w[i]\);
\}

\section*{Running time:}

The objects are to be sorted into non-decreasing order of \(p_{i} / w_{i}\) ratio. But if we disregard the time to initially sort the objects, the algorithm requires only \(\mathrm{O}(\mathrm{n})\) time.

\section*{Example:}

Consider the following instance of the knapsack problem: \(n=3, m=20,\left(p_{1}, p_{2}, p_{3}\right)=\) \((25,24,15)\) and \(\left(w_{1}, w_{2}, w_{3}\right)=(18,15,10)\).
1. First, we try to fill the knapsack by selecting the objects in some order:
\begin{tabular}{|c|c|c|c|c|}
\hline \(\mathrm{x}_{1}\) & \(\mathrm{x}_{2}\) & \(\mathrm{x}_{3}\) & \(\mathrm{w}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}\) & \(\mathrm{p}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}\) \\
\hline \(1 / 2\) & \(1 / 3\) & \(1 / 4\) & \begin{tabular}{c}
\(18 \times 1 / 2+15 \times 1 / 3+10 \times 1 / 4\) \\
\(=16.5\)
\end{tabular} & \(25 \times 1 / 2+24 \times 1 / 3+15 \times 1 / 4=\) \\
24.25
\end{tabular}
2. Select the object with the maximum profit first \((p=25)\). So, \(x_{1}=1\) and profit earned is 25 . Now, only 2 units of space is left, select the object with next largest profit (\(\mathrm{p}=24\)). So, \(\mathrm{x}_{2}=2 / 15\)
\begin{tabular}{|c|c|c|c|c|}
\hline \(\mathrm{x}_{1}\) & \(\mathrm{x}_{2}\) & \(\mathrm{x}_{3}\) & \(\mathrm{w}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}\) & \(\mathrm{p}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}\) \\
\hline 1 & \(2 / 15\) & 0 & \(18 \times 1+15 \times 2 / 15=20\) & \(25 \times 1+24 \times 2 / 15=28.2\) \\
\hline
\end{tabular}
3. Considering the objects in the order of non-decreasing weights \(w_{i}\).
\begin{tabular}{|c|c|c|c|c|}
\hline \(\mathrm{x}_{1}\) & \(\mathrm{x}_{2}\) & \(\mathrm{x}_{3}\) & \(\mathrm{w}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}\) & \(\mathrm{p}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}\) \\
\hline 0 & \(2 / 3\) & 1 & \(15 \times 2 / 3+10 \times 1=20\) & \(24 \times 2 / 3+15 \times 1=31\) \\
\hline
\end{tabular}
4. Considered the objects in the order of the ratio \(p_{i} / w_{i}\).
\begin{tabular}{|c|c|c|}
\hline \(\mathbf{p}_{\mathbf{1}} / \mathbf{w}_{\mathbf{1}}\) & \(\mathbf{p}_{\mathbf{2}} / \mathbf{w}_{\mathbf{2}}\) & \(\mathbf{p}_{\mathbf{3}} / \mathbf{w}_{\mathbf{3}}\) \\
\hline \(25 / 18\) & \(24 / 15\) & \(15 / 10\) \\
\hline 1.4 & 1.6 & 1.5 \\
\hline
\end{tabular}

Sort the objects in order of the non-increasing order of the ratio \(p_{i} / x_{i}\). Select the object with the maximum \(p_{i} / x_{i}\) ratio, so, \(x_{2}=1\) and profit earned is 24 . Now, only 5 units of space is left, select the object with next largest \(p_{i} / x_{i}\) ratio, so \(x_{3}=1 / 2\) and the profit earned is 7.5.
\begin{tabular}{|c|c|c|c|c|}
\hline \(\mathrm{x}_{1}\) & \(\mathrm{x}_{2}\) & \(\mathrm{x}_{3}\) & \(\mathrm{w}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}\) & \(\mathrm{p}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}\) \\
\hline 0 & 1 & \(1 / 2\) & \(15 \times 1+10 \times 1 / 2=20\) & \(24 \times 1+15 \times 1 / 2=31.5\) \\
\hline
\end{tabular}

This solution is the optimal solution.

\section*{JOB SEQUENCING WITH DEADLINES}

When we are given a set of ' \(n\) ' jobs. Associated with each Job \(i\), deadline \(d_{i} \geq 0\) and profit \(P_{i} \geq 0\). For any job ' \(i\) ' the profit \(p i\) is earned iff the job is completed by its deadline. Only one machine is available for processing jobs. An optimal solution is the feasible solution with maximum profit.

Sort the jobs in ' \(\mathrm{j}^{\prime}\) ' ordered by their deadlines. The array \(\mathrm{d}[1: \mathrm{n}\)] is used to store the deadlines of the order of their \(p\)-values. The set of jobs \(j[1: k]\) such that \(j[r], 1 \leq r \leq\) k are the jobs in \({ }^{\mathrm{j}} \mathrm{j}^{\prime}\) and \(\mathrm{d}(\mathrm{j}[1]) \leq \mathrm{d}(\mathrm{j}[2]) \leq \ldots \leq \mathrm{d}(\mathrm{j}[\mathrm{k}])\). To test whether \(\mathrm{J} \mathrm{U}\{\mathrm{i}\}\) is feasible, we have just to insert i into J preserving the deadline ordering and then verify that \(d[J[r]] \leq r, \quad 1 \leq r \leq k+1\).

\section*{Example:}

Let \(n=4,\left(P_{1}, P_{2}, P_{3}, P_{4}\right)=(100,10,15,27)\) and \(\left(d_{1} d_{2} d_{3} d_{4}\right)=(2,1,2,1)\). The feasible solutions and their values are:
\begin{tabular}{|c|l|l|l|l|}
\hline S. No & Feasible Solution & \begin{tabular}{l}
Procuring \\
sequence
\end{tabular} & Value & Remarks \\
\hline 1 & 1,2 & 2,1 & 110 & \\
\hline 2 & 1,3 & 1,3 or 3,1 & 115 & \\
\hline 3 & 1,4 & 4,1 & 127 & OPTIMAL \\
\hline 4 & 2,3 & 2,3 & 25 & \\
\hline 5 & 3,4 & 4,3 & 42 & \\
\hline 6 & 1 & 1 & 100 & \\
\hline 7 & 2 & 2 & 10 & \\
\hline 8 & 3 & 3 & 15 & \\
\hline 9 & 4 & 4 & 27 & \\
\hline
\end{tabular}

\section*{Algorithm:}

The algorithm constructs an optimal set J of jobs that can be processed by their deadlines.
```

Algorithm GreedyJob (d, J, n)
// J is a set of jobs that can be completed by their deadlines.
{
J := {1};
for i:= 2 to n do
{
if (all jobs in J U {i} can be completed by their dead lines)
then J := J U {i};
}
}

```

\section*{OPTIMAL MERGE PATERNS}

Given ' \(n\) ' sorted files, there are many ways to pair wise merge them into a single sorted file. As, different pairings require different amounts of computing time, we want to determine an optimal (i.e., one requiring the fewest comparisons) way to pair wise merge ' \(n\) ' sorted files together. This type of merging is called as 2-way merge patterns. To merge an \(n\)-record file and an \(m\)-record file requires possibly \(n+m\) record moves, the obvious choice choice is, at each step merge the two smallest files together. The two-way merge patterns can be represented by binary merge trees.

\section*{Algorithm to Generate Two-way Merge Tree:}
```

struct treenode
{
treenode * Ichild;
treenode * rchild;
};

```

\section*{Algorithm TREE (n)}
// list is a global of \(n\) single node binary trees
 for \(\mathrm{i}:=1\) to \(\mathrm{n}-1\) do
 \{
 pt new treenode
 (pt lchild) least (list); // merge two trees with smallest
 lengths
 (pt rchild) least (list);
 (pt weight) ((pt Ichild) weight) + ((pt rchild) weight);
 insert (list, pt);
 \}
 return least (list); // The tree left in list is the merge
tree
\}

\section*{Example 1:}

Suppose we are having three sorted files \(X_{1}, X_{2}\) and \(X_{3}\) of length 30,20 , and 10 records each. Merging of the files can be carried out as follows:
\begin{tabular}{|c|c|c|c|c|c|}
\hline S.No & First Merging & \begin{tabular}{l}
Record moves in \\
first merging
\end{tabular} & \begin{tabular}{l}
Second \\
merging
\end{tabular} & \begin{tabular}{l}
Record moves in \\
second merging
\end{tabular} & \begin{tabular}{l}
Total no. of \\
records moves
\end{tabular} \\
\hline 1. & \(\mathrm{X}_{1} \& \mathrm{X}_{2}=\mathrm{T} 1\) & 50 & \(\mathrm{~T}_{1} \& \mathrm{X}_{3}\) & 60 & \(50+60=110\) \\
\hline 2. & \(\mathrm{X}_{2} \& \mathrm{X}_{3}=\mathrm{T} 1\) & 30 & \(\mathrm{~T}_{1} \& \mathrm{X}_{1}\) & 60 & \(30+60=90\) \\
\hline
\end{tabular}

The Second case is optimal.

\section*{Example 2:}

Given five files (X1, X2, X3, X4, X5) with sizes (20, 30, 10, 5, 30). Apply greedy rule to find optimal way of pair wise merging to give an optimal solution using binary merge tree representation.

\section*{Solution:}

Merge \(X_{4}\) and \(X_{3}\) to get 15 record moves. Call this \(Z_{1}\).

Merge \(Z_{1}\) and \(X_{1}\) to get 35 record moves. Call this \(Z_{2}\).

Merge \(X_{2}\) and \(X_{5}\) to get 60 record moves. Call this \(Z_{3}\).

Merge \(Z_{2}\) and \(Z_{3}\) to get 90 record moves. This is the answer. Call this \(Z_{4}\).

Therefore the total number of record moves is \(15+35+60+95=205\). This is an optimal merge pattern for the given problem.

\section*{Huffman Codes}

Another application of Greedy Algorithm is file compression.
Suppose that we have a file only with characters \(a, e, i, s, t\), spaces and new lines, the frequency of appearance of a's is 10 , e's fifteen, twelve i's, three s's, four t's, thirteen banks and one newline.

Using a standard coding scheme, for 58 characters using 3 bits for each character, the file requires 174 bits to represent. This is shown in table below.
\begin{tabular}{ccccc}
Character & Code & & Frequency & \\
\cline { 1 - 2 } A & 000 & & 10 & 30 \\
E & 001 & & 15 & 45 \\
I & 010 & 12 & 36 \\
S & 011 & 3 & 9 \\
T & 100 & 4 & 12 \\
Space & 101 & 13 & 39 \\
New line & 110 & 1 & 3
\end{tabular}

Representing by a binary tree, the binary code for the alphabets are as follows:

The representation of each character can be found by starting at the root and recording the path. Use a 0 to indicate the left branch and a 1 to indicate the right branch.

If the character \(c_{i}\) is at depth \(d_{i}\) and occurs \(f_{i}\) times, the cost of the code is equal to \(d_{i} f_{i}\)

With this representation the total number of bits is \(3 \times 10+3 \times 15+3 \times 12+3 \times 3+3 \times 4+\) \(3 \times 13+3 \times 1=174\)

A better code can be obtained by with the following representation.

The basic problem is to find the full binary tree of minimal total cost. This can be done by using Huffman coding (1952).

\section*{Huffman's Algorithm:}

Huffman's algorithm can be described as follows: We maintain a forest of trees. The weights of a tree is equal to the sum of the frequencies of its leaves. If the number of characters is 'c'. c-1 times, select the two trees T1 and T2, of smallest weight, and form a new tree with sub-trees T1 and T2. Repeating the process we will get an optimal Huffman coding tree.

\section*{Example:}

The initial forest with the weight of each tree is as follows:

The two trees with the lowest weight are merged together, creating the forest, the Huffman algorithm after the first merge with new root \(\mathrm{T}_{1}\) is as follows: The total weight of the new tree is the sum of the weights of the old trees.

We again select the two trees of smallest weight. This happens to be \(T_{1}\) and \(t\), which are merged into a new tree with root \(T_{2}\) and weight 8 .

In next step we merge \(T_{2}\) and a creating \(T_{3}\), with weight \(10+8=18\). The result of this operation in

After third merge, the two trees of lowest weight are the single node trees representing \(i\) and the blank space. These trees merged into the new tree with root \(\mathrm{T}_{4}\).

The fifth step is to merge the trees with roots e and \(\mathrm{T}_{3}\). The results of this step is

Finally, the optimal tree is obtained by merging the two remaining trees. The optimal trees with root \(T_{6}\) is:

The full binary tree of minimal total cost, where all characters are obtained in the leaves, uses only 146 bits.
\begin{tabular}{|l|l|l|c|}
\hline Character & Code & Frequency & \begin{tabular}{c}
Total bits \\
(Code bits X frequency)
\end{tabular} \\
\hline A & 001 & 10 & 30 \\
\hline E & 01 & 15 & 30 \\
\hline I & 10 & 12 & 24 \\
\hline S & 00000 & 3 & 15 \\
\hline T & 0001 & 4 & 16 \\
\hline Space & 11 & 13 & 26 \\
\hline New line & 00001 & 1 & 5 \\
\hline & & Total : & 146 \\
\hline
\end{tabular}

\section*{GRAPH ALGORITHMS}

\section*{Basic Definitions:}

Graph G is a pair (V, E), where \(V\) is a finite set (set of vertices) and \(E\) is a finite set of pairs from V (set of edges). We will often denote \(\mathrm{n}:=|\mathrm{V}|, \mathrm{m}:=|\mathrm{E}|\).

Graph \(G\) can be directed, if \(E\) consists of ordered pairs, or undirected, if \(E\) consists of unordered pairs. If (\(u, v\)) \(E\), then vertices \(u\), and \(v\) are adjacent.

We can assign weight function to the edges: \(\mathrm{w}_{\mathrm{G}}(\mathrm{e})\) is a weight of edge e E . The graph which has such function assigned is called weighted.

Degree of a vertex \(v\) is the number of vertices \(u\) for which (\(u, v\)) \(E\) (denote \(\operatorname{deg}(\mathrm{v})\)). The number of incoming edges to a vertex \(v\) is called in-degree of the vertex (denote indeg(v)). The number of outgoing edges from a vertex is called out-degree (denote outdeg(v)).

\section*{Representation of Graphs:}

Consider graph \(G=(V, E)\), where \(V=\left\{\mathrm{V}_{1}, \mathrm{~V}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}\right\}\).
Adjacency matrix represents the graph as an \(n \times n\) matrix \(A=\left(a_{i, j}\right)\), where
\(a_{i, j}\)
1 , if \(\left(v_{i}, v_{j}\right) E\),
0 , otherwise

The matrix is symmetric in case of undirected graph, while it may be asymmetric if the graph is directed.

We may consider various modifications. For example for weighted graphs, we may have
\[
\begin{array}{lll}
& w\left(v_{i,}, v_{j}\right), & \text { if }\left(v_{i}, v_{j}\right) E_{1} \\
\text { default, } & \text { otherwise, }
\end{array}
\]

Where default is some sensible value based on the meaning of the weight function (for example, if weight function represents length, then default can be , meaning value larger than any other value).

Adjacency List: An array Adj [1 n] of pointers where for \(1 \leq \mathrm{v} \leq \mathrm{n}\), Adj [v] points to a linked list containing the vertices which are adjacent to \(v\) (i.e. the vertices that can be reached from \(v\) by a single edge). If the edges have weights then these weights may also be stored in the linked list elements.

Adjacency matrix

Adjacency list

\section*{Paths and Cycles:}

A path is a sequence of vertices \(\left(v_{1}, v_{2}, \ldots \ldots, v_{k}\right)\), where for all \(i,\left(v_{i}, v_{i+1}\right)\) E. A path is simple if all vertices in the path are distinct.

A (simple) cycle is a sequence of vertices (\(\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots \ldots, \mathrm{v}_{\mathrm{k}}, \mathrm{v}_{\mathrm{k}+1}=\mathrm{v}_{1}\)), where for all \(i,\left(v_{i}, v_{i+1}\right) E\) and all vertices in the cycle are distinct except pair \(v_{1}, v_{k+1}\).

\section*{Subgraphs and Spanning Trees:}

Subgraphs: A graph \(G^{\prime}=\left(V^{\prime}, E^{\prime}\right)\) is a subgraph of graph \(G=(V, E)\) iff \(V^{\prime} V\) and \(E^{\prime}\) E.

The undirected graph \(\mathbf{G}\) is connected, if for every pair of vertices \(u\), \(v\) there exists a path from \(u\) to \(v\). If a graph is not connected, the vertices of the graph can be divided into connected components. Two vertices are in the same connected component iff they are connected by a path.

Tree is a connected acyclic graph. A spanning tree of a graph \(G=(V, E)\) is a tree that contains all vertices of \(V\) and is a subgraph of \(G\). A single graph can have multiple spanning trees.

Lemma 1: Let \(T\) be a spanning tree of a graph G. Then
1. Any two vertices in \(T\) are connected by a unique simple path.
2. If any edge is removed from \(T\), then \(T\) becomes disconnected.
3. If we add any edge into \(T\), then the new graph will contain a cycle.
4. Number of edges in \(T\) is \(n-1\).

\section*{Minimum Spanning Trees (MST):}

A spanning tree for a connected graph is a tree whose vertex set is the same as the vertex set of the given graph, and whose edge set is a subset of the edge set of the given graph. i.e., any connected graph will have a spanning tree.

Weight of a spanning tree \(w(T)\) is the sum of weights of all edges in \(T\). The Minimum spanning tree (MST) is a spanning tree with the smallest possible weight.

\section*{Here are some examples:}

To explain further upon the Minimum Spanning Tree, and what it applies to, let's consider a couple of real-world examples:
1. One practical application of a MST would be in the design of a network. For instance, a group of individuals, who are separated by varying distances, wish to be connected together in a telephone network. Although MST cannot do anything about the distance from one connection to another, it can be used to determine the least cost paths with no cycles in this network, thereby connecting everyone at a minimum cost.
2. Another useful application of MST would be finding airline routes. The vertices of the graph would represent cities, and the edges would represent routes between the cities. Obviously, the further one has to travel, the more it will cost, so MST can be applied to optimize airline routes by finding the least costly paths with no cycles.

To explain how to find a Minimum Spanning Tree, we will look at two algorithms: the Kruskal algorithm and the Prim algorithm. Both algorithms differ in their methodology, but both eventually end up with the MST. Kruskal's algorithm uses edges, and Prim's algorithm uses vertex connections in determining the MST.

\section*{Kruskal's Algorithm}

This is a greedy algorithm. A greedy algorithm chooses some local optimum (i.e. picking an edge with the least weight in a MST).

Kruskal's algorithm works as follows: Take a graph with ' \(n\) ' vertices, keep on adding the shortest (least cost) edge, while avoiding the creation of cycles, until (\(n-1\)) edges have been added. Sometimes two or more edges may have the same cost. The order in which the edges are chosen, in this case, does not matter. Different MSTs may result, but they will all have the same total cost, which will always be the minimum cost.

\section*{Algorithm:}

The algorithm for finding the MST, using the Kruskal's method is as follows:
```

Algorithm Kruskal (E, cost, n, t)
// E is the set of edges in G. G has n vertices. cost [u,v] is the
// cost of edge (u,v). 't' is the set of edges in the minimum-cost spanning tree.
// The final cost is returned.
{
Construct a heap out of the edge costs using heapify;
for i := 1 to n do parent [i] :=-1;
// Each vertex is in a different set.
i := 0; mincost := 0.0;
while ((i<n-1) and (heap not empty)) do
{
Delete a minimum cost edge ( }u,v)\mathrm{ from the heap and
re-heapify using Adjust;
j := Find (u); k := Find (v);
if (j k) then
{
i := i + 1;
t [i, 1] := u; t [i, 2] := v;
mincost :=mincost + cost [u,v];
Union (j, k);
}
}
if (i n-1) then write ("no spanning tree");
else return mincost;
}

```

\section*{Running time:}

The number of finds is at most 2 e , and the number of unions at most \(\mathrm{n}-1\). Including the initialization time for the trees, this part of the algorithm has a complexity that is just slightly more than \(O(n+e)\).

We can add at most \(n-1\) edges to tree \(T\). So, the total time for operations on \(T\) is O(n).

Summing up the various components of the computing times, we get \(O\) (\(n+e \log e\)) as asymptotic complexity

\section*{Example 1:}

Arrange all the edges in the increasing order of their costs:
\begin{tabular}{|l|c|c|c|c|c|c|c|c|c|c|}
\hline Cost & 10 & 15 & 20 & 25 & 30 & 35 & 40 & 45 & 50 & 55 \\
\hline Edge & \((1,2)\) & \((3,6)\) & \((4,6)\) & \((2,6)\) & \((1,4)\) & \((3,5)\) & \((2,5)\) & \((1,5)\) & \((2,3)\) & \((5,6)\) \\
\hline
\end{tabular}

The edge set \(T\) together with the vertices of \(G\) define a graph that has up to \(n\) connected components. Let us represent each component by a set of vertices in it. These vertex sets are disjoint. To determine whether the edge (\(u, v\)) creates a cycle, we need to check whether \(u\) and \(v\) are in the same vertex set. If so, then a cycle is created. If not then no cycle is created. Hence two Finds on the vertex sets suffice. When an edge is included in \(T\), two components are combined into one and a union is to be performed on the two sets.

\section*{MINIMUM-COST SPANNING TREES: PRIM'S ALGORITHM}

A given graph can have many spanning trees. From these many spanning trees, we have to select a cheapest one. This tree is called as minimal cost spanning tree.

Minimal cost spanning tree is a connected undirected graph \(G\) in which each edge is labeled with a number (edge labels may signify lengths, weights other than costs). Minimal cost spanning tree is a spanning tree for which the sum of the edge labels is as small as possible

The slight modification of the spanning tree algorithm yields a very simple algorithm for finding an MST. In the spanning tree algorithm, any vertex not in the tree but connected to it by an edge can be added. To find a Minimal cost spanning tree, we must be selective - we must always add a new vertex for which the cost of the new edge is as small as possible.

This simple modified algorithm of spanning tree is called prim's algorithm for finding an Minimal cost spanning tree.

Prim's algorithm is an example of a greedy algorithm.

\section*{Algorithm Algorithm Prim}
```

(E, cost, n, t)
// E is the set of edges in G. cost [1:n, 1:n] is the cost
// adjacency matrix of an n vertex graph such that cost [i,j] is
// either a positive real number or if no edge (i,j) exists.
// A minimum spanning tree is computed and stored as a set of
// edges in the array t [1:n-1, 1:2]. (t [i, 1], t [i, 2]) is an edge in
// the minimum-cost spanning tree. The final cost is returned.
{
Let (k, l) be an edge of minimum cost in E;
mincost := cost [k, l];
t [1, 1]:= k; t [1, 2]:= l;
for i :=1 to n do // Initialize near
if (cost [i, l] < cost [i, k]) then near [i] := I;
else near [i] := k;
near [k] :=near [I] := 0;
for i:=2 to n-1 do // Find n-2 additional edges fort.
{
Let j be an index such that near [j] 0 and
cost [j, near [j]] is minimum;
t [i, 1]:= j; t [i, 2] := near [j];
mincost := mincost + cost [j, near [j]];
near [j]:= 0
for k:= 1 to n do // Update near[].
if ((near [k] 0) and (cost [k, near [k]] > cost [k,j]))
then near [k] := j;
}
return mincost;
}

```

\section*{Running time:}

We do the same set of operations with dist as in Dijkstra's algorithm (initialize structure, \(m\) times decrease value, \(n-1\) times select minimum). Therefore, we get 0 \(\left(n^{2}\right)\) time when we implement dist with array, \(O(n+E \log n)\) when we implement it with a heap.

\section*{EXAMPLE 1:}

Use Prim's Algorithm to find a minimal spanning tree for the graph shown below starting with the vertex A.

\section*{SOLUTION:}

The stepwise progress of the prim's algorithm is as follows:

\section*{Step 1:}

\begin{tabular}{l|lllllll}
Vertex & A & B & C & D & E & F & G \\
\hline Status & 0 & 1 & 1 & 1 & 1 & 1 & 1 \\
Dist. & 0 & 3 & 6 & & & & \\
Next & \(*\) & A & A & A & A & A & A
\end{tabular}

\section*{Step 2:}

Step 3:

\begin{tabular}{l|ccccccc}
Vertex & A & B & C & D & E & F & G \\
\hline Status & 0 & 0 & 1 & 1 & 1 & 1 & 1 \\
Dist. & 0 & 3 & 2 & 4 & & & \\
Next & \(*\) & A & B & B & A & A & A
\end{tabular}
\begin{tabular}{l|lllllll}
Vertex & A & B & C & D & E & F & G \\
\hline Status & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
Dist. & 0 & 3 & 2 & 1 & 4 & 2 & \\
Next & \(*\) & A & B & C & C & C & A
\end{tabular}
\begin{tabular}{c|ccccccc}
Vertex & A & B & C & D & E & F & G \\
\hline Status & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
Dist. & 0 & 3 & 2 & 1 & 2 & 2 & 4 \\
Next & \(*\) & A & B & C & D & C & D
\end{tabular}

Step 5:

\begin{tabular}{c|ccccccc}
Vertex & A & B & C & D & E & F & G \\
\hline Status & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\
Dist. & 0 & 3 & 2 & 1 & 2 & 2 & 1 \\
Next & \(*\) & A & B & C & D & C & E
\end{tabular}

Step 6:

\section*{Step 7:}

\section*{EXAMPLE 2:}

Considering the following graph, find the minimal spanning tree using prim's algorithm.

The minimal spanning tree obtained as:
\begin{tabular}{|c|c|}
\hline Vertex 1 & Vertex 2 \\
\hline 2 & 4 \\
\hline 3 & 4 \\
\hline 5 & 3 \\
\hline 1 & 2 \\
\hline
\end{tabular}

\section*{The cost of Minimal spanning tree \(=11\).}

The steps as per the algorithm are as follows:
Algorithm near \((\mathrm{J})=\mathrm{k}\) means, the nearest vertex to J is k .
The algorithm starts by selecting the minimum cost from the graph. The minimum cost edge is \((2,4)\).
\(K=2, I=4\)
Min cost \(=\operatorname{cost}(2,4)=1\)
\(\mathrm{T}[1,1]=2\)
\(\mathrm{T}[1,2]=4\)

```

j = 4
near (4) = 0
J = 5
Is near (5) 0
4 0 and cost (4,5) = 4
select the min cost from the
above obtained costs, which is
3 and corresponding J = 3
min cost = 1 + cost (3,4)
=1+3=4
T (2,1) = 3
T (2, 2) = 4
Near [j] = 0
i.e. near (3) =0
for(k=1 to n)
K=1
is near (1) 0, yes
2 0
and cost (1,2) > cost(1, 3)
> 9, No
K = 2
Is near (2) 0, No
K=3
Is near (3) 0, No
K=4
Is near (4) 0, No
K=5
Is near (5) 0
4 0, yes
and is cost ( }5,4)>\operatorname{cost}(5,3
4>3,yes
than near (5) = 3
i=3
for (j=1 to 5)
J = 1
is near (1) 0
2 0
cost (1, 2) = 4
J = 2
Is near (2) 0, No

```
```

J = 3
Is near (3) 0, no
Near (3) = 0
J = 4
Is near (4) 0, no
Near (4) = 0
J = 5
Is near (5) 0
Near (5) = 3 3 0, yes
And cost (5, 3) = 3

```
Choosing the min cost from
the above obtaining costs
which is 3 and corresponding J
\(=5\)
Min cost \(=4+\operatorname{cost}(5,3)\)
 \(=4+3=7\)
\(T(3,1)=5\)
\(T(3,2)=3\)
Near \((J)=0\) near (5) \(=0\)
for (\(k=1\) to 5)
\(k=1\)
is near (1) 0, yes
and \(\operatorname{cost}(1,2)>\operatorname{cost}(1,5)\)
\(4>\), No
\(K=2\)
Is near (2) 0 no
\(K=3\)
Is near (3) 0 no
\(K=4\)
Is near (4) 0 no
\(K=5\)
Is near (5) 0 no
\(i=4\)
for \(\mathrm{J}=1\) to 5
J = 1
Is near (1) 0
2 0, yes
cost \((1,2)=4\)
\(j=2\)
is near (2) 0, No

\(T(4,1)=1\)
\(T(4,2)=2\)

\subsection*{4.8.7. The Single Source Shortest-Path Problem: DIJKSTRA'S ALGORITHMS}

In the previously studied graphs, the edge labels are called as costs, but here we think them as lengths. In a labeled graph, the length of the path is defined to be the sum of the lengths of its edges.

In the single source, all destinations, shortest path problem, we must find a shortest path from a given source vertex to each of the vertices (called destinations) in the graph to which there is a path.

Dijkstra's algorithm is similar to prim's algorithm for finding minimal spanning trees.
Dijkstra's algorithm takes a labeled graph and a pair of vertices \(P\) and \(Q\), and finds the
shortest path between then (or one of the shortest paths) if there is more than one. The principle of optimality is the basis for Dijkstra's algorithms.

Dijkstra's algorithm does not work for negative edges at all.
The figure lists the shortest paths from vertex 1 for a five vertex weighted digraph.

Shortest Paths

\section*{Algorithm:}

\section*{Algorithm Shortest-Paths (\(\mathbf{v}\), cost, dist, \(\mathbf{n}\))}
```

// dist [j], 1\leq j \leq n, is set to the length of the shortest path
// from vertex v to vertex }\textrm{j}\mathrm{ in the digraph G with n vertices.
// dist [v] is set to zero. G is represented by its
// cost adjacency matrix cost [1:n, 1:n].
{
for i:=1 to n do
{
S [i]:= false; // Initialize S.
dist [i]:=cost [v, i];
}
S[v] := true; dist[v] := 0.0; // Put v in S.
for num := 2 to n - 1 do
{
Determine n-1 paths from v.
Choose u from among those vertices not in S such that dist[u] is minimum;
S[u] := true; // Put u is S.
for (each w adjacent to u with S [w] = false) do
if (dist [w] > (dist [u] + cost [u, w]) then // Update distances
dist [w]:= dist [u] + cost [u,w];
}
}

```

\section*{Running time:}

Depends on implementation of data structures for dist.
Build a structure with \(n\) elements A
at most \(m=E\) times decrease the value of an item \(m B\)
' \(n\) ' times select the smallest value nC
For array \(A=O(n) ; B=O(1) ; C=O(n)\) which gives \(O\left(n^{2}\right)\) total.
For heap \(A=O(n) ; B=O(\log n) ; C=O(\log n)\) which gives \(O(n+m \log n)\) total.

\section*{Example 1:}

Use Dijkstras algorithm to find the shortest path from A to each of the other six vertices in the graph:

\section*{Solution:}
\begin{tabular}{ccccccccc}
0 & 3 & 6 & - & - & - & - \\
3 & 3 & 0 & 2 & 4 & - & - & - \\
The cost adjacency matrix is & 6 & 2 & 0 & 1 & 4 & 2 & & - \\
& 4 & 1 & 0 & 2 & - & - & 4 \\
& - & 4 & 2 & 0 & 2 & & 1 \\
& - & - & 2 & - & 2 & 0 & 1 \\
& - & - & - & - & 4 & 1 & 1 & 0
\end{tabular}

The problem is solved by considering the following information:
Status[v] will be either ' 0 ', meaning that the shortest path from \(v\) to \(v_{0}\) has definitely been found; or '1', meaning that it hasn't.

Dist[v] will be a number, representing the length of the shortest path from vto \(v_{0}\) found so far.

Next[v] will be the first vertex on the way to \(v_{0}\) along the shortest path found so far from \(v\) to \(v_{0}\)

The progress of Dijkstra's algorithm on the graph shown above is as follows:

\section*{Step 1:}

\begin{tabular}{c|ccccccc}
Vertex & A & B & C & D & E & F & G \\
\hline Status & 0 & 1 & 1 & 1 & 1 & 1 & 1 \\
Dist. & 0 & 3 & 6 & & & & \\
Next & \(*\) & A & A & A & A & A & A
\end{tabular}

\section*{Step 2:}

\section*{Step 3:}

\begin{tabular}{l|lllllll}
Vertex & A & B & C & D & E & F & G \\
\hline Status & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
Dist. & 0 & 3 & 5 & 6 & 9 & 7 & \\
Next & \(*\) & A & B & C & C & C & A
\end{tabular}
\begin{tabular}{c|lllllll}
Vertex & A & B & C & D & E & F & G \\
\hline Status & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
Dist. & 0 & 3 & 5 & 6 & 8 & 7 & 10 \\
Next & \(*\) & A & B & C & D & C & D
\end{tabular}

\section*{Step 5:}

\begin{tabular}{l|ccccccc}
Vertex & A & B & C & D & E & F & G \\
\hline Status & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\
Dist. & 0 & 3 & 5 & 6 & 8 & 7 & 8 \\
Next & \(*\) & A & B & C & D & C & F
\end{tabular}

Step 6:

\begin{tabular}{c|ccccccc}
Vertex & \(\mathbf{A}\) & \(\mathbf{B}\) & \(\mathbf{C}\) & \(\mathbf{D}\) & \(\mathbf{E}\) & \(\mathbf{F}\) & \(\mathbf{G}\) \\
\hline Status & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
Dist. & 0 & 3 & 5 & 6 & 8 & 7 & 8 \\
Next & \(*\) & A & B & C & D & C & F
\end{tabular}

Step 7:

DYNAMIC PROGRAMMING.
- It war invented by a prominent 0.5 mathematician Richard Bellman, in the 1950 s as a general method for optimising multistage decision process.
- Programming standards for planning.
- Dynamic programming is a technique for solving problems with overlapping subproblems.
1. THE GENERAL RETHOD
- Dynamic programming is on algorithm design method that can be used when the solution to a problem con be viewed as the result of a sequence of decisions.
Some Examples.
1. Knapsack:-
- The solution to the knapsack problem is the result of sequence of decisions.
We have to decide the values of \(x_{i}, 1 \leq i \leq n\).
- First we make a decision on \(r_{1}\), then on \(x_{2}\), then on \(r_{3}\), and so on.
- An optimal sequence of decisions maximizes the objective function \(\sum p_{i} x_{i}\).
- If also satisfies the constraint \(\sum w_{i} x_{i} \leq m\) and \(s \leq x_{i} \leq 1\).
2. Shortest Path:
- One way to find a shatest path from vertex: to vertex \(j\) in a directed graph \(G\) is to decide which vertex should be the second vertex, which the third, which the focuth, and so on, cantil \(j\) is reached.
- An optimal sequence of decisions is one that results in a path of least length.
- For some of the problems that mong be viewed in tais logy am optimal sequence of decisions can be formed by making the decisions one at a time and never making an erroneous decision.
- Tais is true for all problems solvable by the greedy method.
- Ere many other problems, it is not possible to make stepwise decisions in such a manner that the sequence of decisions made is optimal.
example. Shortest path:-
- Suppose we wish to find a shortest path from vertex i to vertex \(j\).
- Let A; be the vertex adjacent from vartere \(\because\)
- Which of the venter in \(A_{i}\) should be the second vertex on the path?
- There is no way to male a decision def this time and guarantee that future decisions leading to an optimal sequence can be made.
- It on tee other hound we wish to find a shortest path from vertex i to all other vertices in \(G\), then at each step, a cared decision con be made.
- One way to solve problems for cohich it is not possible to make a sequence of stepwise decisions leading to an optimal decision sequence is to try all possible decision sequences. and then pick out the best.
- In dugnamic programming an optimal sequence of decisions is obtained by making explicit appeal to the principle of optimality.

Deb Principle of optimality.
- If states that an optimal sequence of decisions has the properly that whatever the initial state and decision are, the remaining decisions must constitute an optimal decision sequence coria round to the state resulting from the first decision.

Difference between tee greedy method and dogncemic programming.
- On greedy method only one decision sequence ever generated.
- In dynamic programming, moony decision sequences may be generated.
- However, sequences containing scaboptimal subsequences cant be optimal and so will not be generated.
pile Sharpest Path:-
- To find the shortest path from vertex ito vertex j. in a directed graph \(G\).
- Ancerne that \(i\), it, i2...ik, is a shortest pate from ito \(j\).
- Starting with the initial vertex i, a decision has been made to go to vertex ill.
- Following this decision, the problem state is defined by vertex il and we need to find a path from il to \(j\).
- In is clear tat the sequence it,i2...ik, m mush constitute a shortest il to \(j\) path.
. If not, let ir, ni, nz.... Mg, j be a shortest it to I path.
then \(i, i 1, n, \cdots n q ; i n\) an \(\bar{i}\) to \(j\) pate tact is shorter thou the path \(i, i 1, i_{2} \cdots i k, j\)
- Kencfore the principle of optimality applies for this problem.
Example os knapsack
The of knapsack problem is similar to the knapsack problem except that tee xis are restricted to have a value of either o or 1.
- Using \(K N A P(2, j, y)\) to represent the problem
\[
\begin{aligned}
& \text { maximize } \leq R \leq i \leq j P_{i} x_{i} \\
& \text { scibject to } \sum \ell \leq i \leq i \omega_{i} \psi_{i} \leq y \\
& x_{i}=0 \text { on } 1, \ell \leq i \leq j
\end{aligned}
\]
the knapsack problem is \(\operatorname{knap}(1, n, m)\).
- Let \(y_{1}, y_{2} \cdots y_{n}\) be an optimal sequence of \(0 / 1\) values for \(x_{1}, x_{2} \ldots x_{n}\) respectively.
- If \(y_{1}=0\), then \(y_{2}, y_{3} \cdots y_{n}\) must constitute an optimal sequence for the problem \(\operatorname{KNAP}(2, n, m)\)
. If et does not, then \(y_{1}, y_{2} \ldots y_{n}\) is not on optimal sequence for \(\operatorname{KNAP}(1, n, m)\).
- It \(y_{1}=1\), then \(y_{2} \ldots y_{n}\) mast be on optimal sequence for the problem KNAP(2,n,m-w).
If it is not, then there is another o/, sequence \(z_{2}, z_{3} \ldots z_{n}\) beach that \(\sum z \leq i \leq w_{i} w_{i} \leq m-w_{1}\) and \(\sum_{2} \leq i \leq n P_{i} z_{i}>\sum_{2} \leq i \leq n P_{i} y_{i}\).
- Hence the sequence \(y_{1}\) 最, \(z_{3} \cdots z_{n}\) iss a sequence cotta greater value.
- Therefore the principle of optimality applies.

ALL-PAIRS SHORTEST PATHS.
Let \(G=y(V G=(V, E)\) be a directed graph with n vertices.
- Let cost be a cost of adjacency matrices for \(G\) such that \(\operatorname{cost}(\dot{c}, i)=0,1 \leq i \leq n\).
\(\operatorname{cost}(i, j)=\operatorname{length} / \operatorname{cost}\) of edge \((i, j)\)
if \((i, j) \in E\left(G_{2}\right)\).
\(\operatorname{cost}(i, j)=\alpha\) if \(i \neq j\) and \((i, j) \notin E(G)\).
The all -pains shortest..poth problem is to determine a matrix \(A\) such that \(A(i, j)\) is the length of the shortest path from ito \(j\).
- If we allow \(G\) to contain a cycle of negative length, then the shorter path between any two vertices on this cycle has length - - .
- Let es examine a shortest ic to path in \(G, i \neq j\).
- This path originates at vertex ic and goes through some intermediate vertices and terminates at vertex \(j\).
- We can ansume that this path contains no cycles for of there is a cycle, then this can be deleted without increasing the path length.
- If \(k\) is can intermediate vertex on this shortestpath, them the subpaths from \(i\) to \(k\) and from \(k\) to \(j\) nest be shortest paths from \(i\) to \(k\) and \(k\) to \(j\) respectively.
- Otherwise, the ito path is not of minimum length.
- So the principle of optimality hots.
- Using \(A^{k}(i, j)\) to represent the length of a shortest path from ito; going through no vertex of cinder greater Thank.
- clearly \(A^{\circ}(i, j)=\operatorname{cost}(i, j), 1 \leq i \leq n, 1 \leq j \leq n\).
- We can obtain a meccerrence for \(4^{k}(i, j)\) as
\[
A^{k}(\ddot{c}, j)=\min \left\{A^{k-1}(\dot{c}, j), A^{k-1}(\ddot{c}, k)+A^{k-1}(k, j)\right\}, k \geq 1
\]

Example

Gritially \(A^{0}(i, j)=c(i, j), 1 \leq i \leq n, 1 \leq j \leq n\).
\begin{tabular}{l|lll}
\(A^{\circ}\) & 1 & 2 & 3 \\
\hline 1 & 0 & 4 & 11 \\
2 & 6 & 0 & 3 \\
3 & 3 & \(\alpha\) & 0
\end{tabular}
\[
\begin{aligned}
& \text { Using } A^{k}(i, j)=\min \left\{A^{k-1}(i, j), A^{k-1}(i, k)+A^{k-1}(k, j)\right\} \text {. } \\
& A_{i=1, j=1, k=1}^{\prime}=\min \left\{A^{1-1}(1,1), A^{1-1}(1,1)+A^{1-1}(1,1)\right\} \\
& =\min \left\{A^{0}(1,1), A^{0}(1,1)+A^{\circ}(1,1)\right\} \\
& =\sin \{0,0+0\}=0 \\
& \begin{array}{l}
A^{\prime}(1,2) \\
i=1, j=2, k=1
\end{array}=\min \left\{A^{1-1}(1,2) \geqslant A^{1-1}(1,1)+A^{1-1}(1,2)\right\} \\
& =\min \left\{A^{0}(1,2), A^{0}(1,1)+A^{0}(1,2)\right\} \\
& =\sin \{4,0+4\}=4 \\
& A_{i=1}^{\prime}\left(1,3=3, k=1=\min \left\{A^{1-1}(1,3), A^{1-1}(1,3)+A^{1-1}(1,3)\right\}\right. \\
& =\min \left\{A^{\circ}(1,3), A^{\infty}(111)+A^{\circ}(1,3)\right\} \\
& =\min \{11, \quad o+11\}=11 \\
& \begin{array}{l}
A^{\prime}(2,1)=\min \left\{A^{1-1}(2,1), A^{1-1}(2,1)+A^{1-1}(1,1)\right\}, k=1 \\
i=2, j=1, k=1
\end{array} \\
& =\min \left\{A^{0}(2,1), A^{0}(2,1)+A^{0}(1,1)\right\} \\
& =\min \{6,6+0\}=6 \\
& A_{3}^{\prime}(2,2) \\
& i=2, j=2, k=1 \\
& =m i n\left\{A^{(1-2}(2,2), A(2,1)+A(1,2)\right\} \\
& =\min \left\{A^{0}(2,2), A^{0}(2,1)+A^{\circ}(1,2)\right\} \\
& =\min \{0,6+4\}=0
\end{aligned}
\]
\[
\begin{aligned}
& A^{\prime}(2,3)=\min \left\{A^{1 \prime 1}(2,3), \quad A^{(1-1}(1,2)+A^{1-1}(2,3)\right\} \\
& \text { (}-2, j=3, k=1=\min \left\{A^{0}(2,3), A^{0}(1,2)+A^{0}(1,3)\right\} \\
& =\min \{2,6+11\}=2 \\
& A^{\prime}(3,1)=\min \left\{A^{1-1}(3,1), A^{1-1}(3,1)+A^{\prime \prime 1}(1,1)\right\} \\
& i=3, j=1, k=1=\min \left\{A^{\circ}(3,1), A^{\circ}(3,1)+A^{\circ}(1,3)\right\} \\
& =\min \{3,3+0\}=3 \\
& A^{\prime}(3,2)=\min \left\{A^{1-1}(3,2), A^{1-1}(3,1)+A^{1-1}(1,2)\right\} \\
& =\min \left\{A^{\circ}(3,2), A^{\circ}(3,1)+A^{\circ}(1,2)\right\} \\
& =\min \{\infty, 3+4\rangle=7 \text {. } \\
& A^{\prime}(3,3)=0 .
\end{aligned}
\]
\begin{tabular}{c|lll}
1 & 1 & 2 & 3 \\
\hline 1 & 0 & 4 & 11 \\
2 & 6 & 0 & 2 \\
3 & 3 & 7 & 0
\end{tabular}.
calcalations for \(A^{2}\) matarix.
\[
\begin{aligned}
& A^{2}(1,1)=0=\min \left(A^{2-1}(1,2), A^{2-1}(1,2)+A^{2-1}(2,2)\right\} \\
& A^{2}(1,2)=\min \left\{A^{\prime}(1,2), A^{\prime}(1,2)+A^{\prime}(2,2)\right\} \\
& i=1, j-2, R=2=\min \{4,4+0\}=4 \\
& A^{2}(1,3)=\min \left\{A^{2-1}(1,3), A^{2-1}(1,2)+A^{2-1}(2,3)\right\} \\
& 2,1, j=3, K=2=\min \left\{A^{\prime}(1,3), A^{\prime}(1,2)+A^{\prime}(2,3)\right\} \\
&=\min \{11,4+2\}=6 \\
& A^{2}(2,1)= \min \left\{A^{2-1}(2,1), A^{2-1}(2,2)+A^{2-1}(2,1)\right\} \\
& i=2, j, 1, k=2=\min \left\{A^{\prime}(2,1), A^{\prime}(2,2)+A^{\prime}(2,1)\right\} \\
&=\min \{6,0+6\}=6 \\
& A^{2}(2,2)=0 \\
& A^{2}(2,3)= \min \left\{A^{2+1}(2,3), A^{2-1}(2,2)+A^{2-1}(2,3)\right\} \\
& i=2, j 2, K=2=\min \left\{A^{\prime}(2,3), A^{\prime}(2,2)+A^{\prime}(2,3)\right\} \\
&=\min \{2,0+2,0=2
\end{aligned}
\]
\[
\begin{aligned}
& A^{2}(3,1)=\min \left\{A^{2-1}(3,1), A^{2-1}(3,2)+A^{2-1}(2,1)\right\} \\
& i=3, j=1, k=2=\min \left\{A^{\prime}(3,1), A^{\prime}(3,2)+A^{\prime}(2,1)\right\} \\
& =\min \{3,7+6\}=3 \\
& \begin{array}{l}
A^{2}(3,2) \\
C^{-3}, j=2, k-2
\end{array}=\min \left\{A^{2-1}(3,2), A^{2-1}(3,2)+A^{2-1}(2,2)\right\} \\
& =\min \left\{A^{d}(3,2), A^{\prime}(3,2)+A^{\prime}(2,2)\right\} \\
& =m \text { in }\{7,7+0\}=7 \\
& A^{2}(3,3)=0 . \\
& \begin{array}{l|lll}
A^{2} & 1 & 2 & 3 \\
\hline 1 & 0 & 4 & 6 \\
2 & 6 & 0 & 2 \\
3 & 3 & 7 & 0
\end{array} .
\end{aligned}
\]
calcalations for \(A^{3}\) matrix.
\[
\begin{aligned}
& A^{3}(1,1)=0 \\
& A^{3}(1,2)-\min \left\{A^{3-1}(1,2), A^{3-1}(1,3)+A^{3-1}(3,2)\right\} \text {. } \\
& =1, j=2, k=3=\min \left\{A^{2}(1,2), A^{2}(1,3)+A^{2}(3,2)\right\} \\
& =m \text { in }\{4,6+7\}=4 \\
& A^{3}(1,3)=\min \left\{A^{3-1}(1,3), A^{3-1}(1,3)+A^{3-1}(3,3)\right\} \\
& i=1, j=3, k=3=\min \left\{A^{2}(1,3), A^{2}(1,3)+A^{2}(3,3)\right\} \\
& =m \operatorname{in}\{6,6+0\}=6 \\
& A^{3}(2,1)=\min \left\{A^{3-1}(2,1), A^{3-1}(2,3)+A^{3-1}(3,1)\right\} \\
& i=2, j=1, k=3=\min \left\{A^{2}(2,1), A^{2}(2,3)+A^{2}(3,1)\right\} \\
& \therefore \min \{6,2+3\}=5 \\
& A^{3}(2,2)=0 \\
& A^{3}(2,3)=\min \left\{A^{3-1}(2,3), A^{3-1}(2,3)+A^{3-1}(3,3)\right\} \\
& \text { co } 2, j=3, k=3=\min \left\{A^{2}(2,3), A^{2}(2,3)+A^{2}(3,3)\right\} \\
& =\min \{2,2+0\}=2 \\
& A^{3}(3 \cdot 1)=\min \left\{A^{3-1}(3,1), A^{3-1}(3,3)+A^{3-1}(3,1)\right\} \\
& \text { 203, }=1, k=3=\min \left\{A^{2}(3,1), A^{2}(3,3)+A^{2}(3,1)\right\} \\
& =\min (3,0+3\}=3
\end{aligned}
\]
\[
\begin{aligned}
& A^{3}(3,2)=\min \left\{A^{3-1}(3,2), A^{3-1}(3,3)+A^{3-1}(3,2)\right\} \\
& i=3,5,2, k-3=\min \left\{A^{2}(3,2), A^{2}(3,3)+A^{2}(3,2)\right\} \\
&=\min \{7,0+7\}= \pm \\
& A^{3}(3,3)=0
\end{aligned}
\]
\begin{tabular}{l|lll}
\(A^{3}\) & 1 & 2 & 3 \\
\hline 1 & 0 & 4 & 6 \\
2 & 5 & 0 & 2 \\
3 & 3 & 7 & 0
\end{tabular}

Finally, coot matrix \(A^{3}\) is the shortest path of call the posits.
Agrothm.
Algorithm All Paths (cost, A, n)
Il cost \([1: n, n \cdot n]\) is the cost adjacency motion. "A \([i, j]\) is the cont of a shortest path fromith \(j\) I \(\operatorname{cost}[i, i]=0.0\) fa \(1 \leq i \leq n\).
\& for \(i=1\) to \(n d o\)
for \(j:=1\) to \(k d o\)
\[
A[i, j]=\operatorname{cost}[i, j] .
\]
for \(k:=1\) to \(n d o\)
for \(i:=1\) rondo
for \(;:=1\) to \(k\) do
\[
A[i, j]=\min (A[i, j], A[i, k]+A[k, j])
\]
\(\}\).
The time complexity is \(\theta\left(n^{3}\right)\)

SINGLE-SOURCE SHORTEST PATHS (O)
DIJKSTRA's ALGORITHM.
- Given a directed graph \(G=(V, E)\), a weighting function cont for the edges of \(G\).
-The starting vortex of the path is referred to as the source x and the last vertex the destination. - The graphs are digraphs.
- The problem is to determine the shortest paths from \(v_{0}\) to all the remaining vertices of \(G\).
- If is assumed that all the weights are positive.

The shortest pooh between Vo and some other node \(v\) is an adering among a subset of the edges. - Hence this problem fits the ordering paradigm.

Source \(=\) Node 1 .
Length -adjacency Matrix

Illustration \(S\)
\[
\begin{array}{llllll}
\text { vortex } \\
\text { seleded } & 2 & 3 & 4 & 5
\end{array}
\]

If node 1 is sowers vertex then shorter pate from 1 to 2 is \(\{1,4,5,2\}\).
The length of this path in \(20+15+20=45\).
- First, a shortest path to the necerest vertex is generated.
Then a shastast path to the second nearest vertex is generated an so on.
- In sadder to generate the shortest paths in tens order, we need to able fo determine.
i) the next vertex to which a shortest path must be generated. and
2) A shortest path to this vertex.

Let \(s\) denote the set of vertices (including \(v_{0}\)) at to catch paths that vaster. have already been generated. *Fore co not in \(S\), let dsat[w] be tie length of the shatest path starting from \(v_{0}\), going thorough only those vertices teat are in \(s\) and ending af w.

Algorithm Shortest Paths (\(v\), cost, dist, n)
" \(\operatorname{dist}[j], 1 \leq j \leq n\), is set to the length of the "Shortest path from vertex \(v\) to vertex \(j\) in a digraph " \(a\) coth \(n\) vertices. \(\operatorname{dist}[v]\) is set to zero. \(G\) in represented by its cost adjacency matron \(\operatorname{cost}[1: n, 1: n\}\). \(\xi\)
for \(:=1\) to \(n\) do
\{ 11 Initialize \(s\).
\[
\begin{aligned}
& S[i]:=\text { false; } \\
& \text { dist }[i]:=\operatorname{cost}[v, i] ; \\
& \text { S } \\
& S[v]:=\text { true; } \\
& \text { dis }[v]:=0 ; \text { // Put } v i n s \\
& \text { for rem }:=2 \text { to } n \text { do }
\end{aligned}
\]
\(\xi\)
11 Determine \(n-1\) paths from \(v\).
choose a from among those vertices s not in \(s\) such that \(\operatorname{dist}[u]\) is minimum; \(S[u]:=\) true \(川\) Put \(u\) in \(S\).
for (each w adjacent to \(u\) with
\[
S[w]=\text { false } d_{0}
\]

1/ update distances.
if \(\operatorname{din}[\omega] \cdot \operatorname{dist}[u]+\operatorname{cost}([u, w]]\) then
\[
\operatorname{dist}[\omega]:=\operatorname{dist}[u]+\operatorname{Cost}[u, \omega] ;
\]
\(\}\).

Matrix chain Multiplication (race)
(a)

TCafaè chain Ordering Problem.
- reck is an optimization problem that con be solved using dynamic programming.
- Given a sequence of matrices, the goal is to find the most efficient cony to multiply these matrices.
The problem is not actually to perform the multiplications, but merely to decide the sequence of the matrix multiplications involved.
- Here are many options because matrix multiplication is associative.
For en. Four matrices \(A, B, C\) and. \(D\). we would here
\[
\begin{aligned}
& ((A B) C) D=(A(B C)) D=(A B)(C D)=A((B C)) D=A(B(C D)) \text {. }
\end{aligned}
\]

However, the order in which the product is parenthesized affects the number of simple arithmetic operations needed to compute the product, on the efficiency.
er. A is \(10 \times 30\) matrix. B is \(30 \times 5\) matrix, \(C\) is \(5 \times 6\) matron,
\[
\begin{aligned}
(A B) C & =(10 \times 30 \times 5)+(10 \times 5 \times 60) \\
& =1500+3000=4500 \\
A C B C) & =(30 \times 5 \times 60)+(10 \times 30 \times 60) \\
& =9000+18000=27000
\end{aligned}
\]
clearly the first method in more efficient.
\[
A=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{array}\right]_{3 \times 4} \quad B=\left[\begin{array}{ll}
2 & 2 \\
2 & 2 \\
2 & 2 \\
2 & 2
\end{array}\right]_{4 \times 2} \quad A \times B=[8 .]_{3 \times 2}
\]

Tint element \(1 \times 2+1 \times 2+1 \times 2+1 \times 2=8\)
ie. 4 multiplications required.
Total \(6 \times k=24\).
\[
\therefore \text { e. } 3 \times 4 \times 2=24
\]

Exomple!.
\(A_{1}[2, \hat{B}], A 2^{2}[6,4], A 3[4,1]\).
\begin{tabular}{c|c|c|c}
1 & 2 & 3 \\
\hline 1 & 0 & \(48^{(1,2)}\) & \(36^{(1,(2,3)]}\) \\
\hline 2 & & 0 & \(24^{(2,3)}\) \\
\hline 3 & & & 0 \\
\hline & & &
\end{tabular}
\[
x=1
\]
we cant do with one mafrix. So we placeitas zero
\[
\begin{aligned}
& l=2 \text { ie. }\{(1,2),(2,3)\} \\
& \text { (1) } \cdot(1,2) \rightarrow 2 \times 6 \times 4=48 \\
& \text { (2) }[2,3) \rightarrow 6 \times 4 \times 1=24 \\
& l=3 \text { ie }\{(1,2,3)\}
\end{aligned}
\]
case:. \([(1,2) 3]\)
\[
\begin{aligned}
& \rightarrow 48+2 \times 4 \times 1 \\
& \rightarrow 48+8=56 .
\end{aligned}
\]
\[
\begin{aligned}
& \operatorname{coser} {[1(2,3)] } \\
& \rightarrow 24+2 \times 6+1 \\
& \rightarrow 24+12=36 .
\end{aligned}
\]

In this we will take minimam.
\[
i \cdot e=36
\]

Theltiplications geqcéred \(=36\)
\[
\begin{aligned}
\operatorname{from}(1,3) & \Rightarrow(1(2,3)) \\
& \Rightarrow\left(A_{1}\left(A_{2}, A_{3}\right)\right)
\end{aligned}
\]

Generalize.
\(A_{1} A_{2} \cdots A n\).
\(A[1 N]\).

minimum cost.
\[
A[i, j]=\operatorname{Rin}_{k=n}^{j-1}\left\{A[i, k]+A[k+1, j]+\frac{\pi_{i} c_{k} c_{j}}{\pi_{i n} c_{0} \Delta t}\right\}
\]

Algorithm
Tatare"x-chain (array P[1.n \(]\))
\(\xi\). array \(s[1 \cdots n-1,2 \cdots n]\).
for \(i=1\) to \(n d o\)
\[
m[i, i]=0
\]
for \(l=2\) to \(n d o\)
\(\{\) for \(i=1\) to \(n-l+1\) do
\[
\begin{aligned}
& \left\{\quad j^{u}=i+l-1 ;\right. \\
& m[i, j]=10 \mathrm{~F} \text { cITY; } \\
& \text { for } k=1 \text { to } j-1 d o \\
& \text { \& } \\
& q=m[i, k]+m[k+1, j]+P[i-1] \times P[k] \times P[j] \\
& \text { if }(2<m[i, j]) \\
& \{m[i, j]=q ; \\
& S[\dot{c}, j]=k ; \\
& \text { \} }
\end{aligned}
\]
return \([1, n]\) (final cont) card \(s\) (spliting maskers):

Excomple. 2
\[
A 1[2,3], A 2[3,6], A B\left[6^{2}, 4\right], A 4[4,5]
\]
\begin{tabular}{c|c|c|c|c|}
& 0 & & & 2 \\
\hline 0 & 0 & 36 & 8 \\
\hline 1 & & 0 & \(72^{(1,2)}\) & 132 \\
\hline 2 & & & \((0,1), 2)\) & \((224,2), 3)\) \\
\hline 3 & & & 0 & \(120^{(2,3)}\) \\
\hline & & & & 0 \\
\hline & & & & \\
\hline
\end{tabular}
\(l=1\). we can't do with ane matrix. So we place it tero
\[
\begin{aligned}
& l=2 \text {.i.e }\{(0,1),(1,2),(2,3)\} \\
& \text { rat }(0,1)=2 \times 3 \times 6=36 . \\
& \operatorname{rat}(1,2)=3 \times 6 \times 4=72 . \\
& \operatorname{reat}(2,3)=6 \times 4 \times 5=120 . \\
& l=3 . \text { ine }\{(0,41,2), 4,2)\{(0,1,2),(1,2,3)\} .
\end{aligned}
\]

Trat \((0,1,2) \rightarrow[(0,1), 2]\)
(1)
\[
\begin{aligned}
& \rightarrow \quad 36+2 \times 6 \times 4 \\
& \rightarrow \quad 36+48=84
\end{aligned}
\]
(2) rat co,1,2)
\[
\begin{aligned}
& \rightarrow[0,(1,2)] \\
& \rightarrow 72+2 \times 3 \times 4 \\
& \rightarrow 72+24=96
\end{aligned}
\]
from (1) \& (2) (1) is minimum.
\(\operatorname{rat}(1,2,3) \rightarrow[(1,2), 3]\)
(1)
\[
\begin{aligned}
& \rightarrow 72+3 \times 4 \times 5 \\
& \rightarrow 72+60=132
\end{aligned}
\]
\(\operatorname{ract}(1,2,3) \rightarrow[1,(2,3)]\)
\[
\begin{aligned}
& \rightarrow 120+3 \times 6 \times 3 \\
& \rightarrow 120+90=210
\end{aligned}
\]
fromm (1) \(\times\) (2) (1) is minimum.
\[
\begin{aligned}
& A=4 \text { i.e. }(0,1,2,3) \\
& \text { Mat }(0,1,2,3) \rightarrow \operatorname{rot}(0,(1,2,3)) \\
& \rightarrow 132+2 \times 3 \times 5 \\
& \rightarrow 130+30=162 . \\
& \operatorname{rat}(0,1,2,3) \rightarrow \operatorname{rat}((0,1,2), 3) \\
& \rightarrow 84+2 \times 4 \times 5 \\
& \rightarrow 84+40=124 \\
& \operatorname{Mat}(0,1,2,3)\rightarrow \cot (10,1),(2,3)) \\
& \rightarrow 36+120+2 \times 6 \times 5 \\
&(3) \rightarrow 36+120+60=216
\end{aligned}
\]
from (1) \(Q\) (3) \(x\) (3) (2) is minimum.
\[
\begin{aligned}
\text { Tealfiplications aequired } & =124 \\
& =[(0,1,2), 3] \\
& =[(0,1 B, 2), 3] \\
& \left.=\left[\left(A_{1}, A_{2}\right), A_{3}\right) A_{4}\right]
\end{aligned}
\]

Es.(1) Find tee motrix chain multiplication of
\[
\begin{aligned}
& P[]=\{40,20,30,10,30\} \text { i.e. } \\
& A(40,20), B(20,30)-C(30,10), D(10,30) \\
& \text { output }=26000, \text { i.e. }[(A(B C)) D]
\end{aligned}
\]
(2). Find the mataix chain multiplication of.
\[
\begin{aligned}
& P[]=\{10,20,30,40,30\} i e . \\
& A(10,20), B(20,30), C(30,40), D(40,30) . \\
& O \text { cetput }=6000<e \cdot((A B) C) D
\end{aligned}
\]

Optimal Binary Search Trees
- A binary search tree in ane of the mont important data structures in computer science. - One of its principled applications is to implement a dictionary, a set of elements croita the operations of searching, insertion and deletions. - If probabilities of searching for elements of a set are known then an optimal binary search tree for which the average number of comparisons in a scorch is the smallest possible.
- Consider foyer kegs \(A, B, C\) and \(D\) to be searched for with probabilities 0.1, 0.2, 0.4 and 0.4
- Two ponible binary search treen are
(a)
(A)
(b)
(B)

- The average number of comparisons in a succenful scorch (a) \(0.1 \times 1+0.2 \times 2+0.2 \times 3+0.3 \times n=0.1+0.4+1.2+1.2\) \(=2.9\).
(b) \(0.1 \times 2+0.2 \times 1+0.4 \times 2+0.3 \times 5\)
\[
0.2+0.2+0.8+0.9=2.1
\]
- We would find the optimal trace by generating all binary search trees with these kegs.
- The total number of binary search trees with \(n\) keys is equal to the \(n^{\text {th }}\) Caralan Number
\[
\begin{aligned}
& C(n)=\binom{2 n}{n} \frac{1}{n+1} \text { for } n>0 \\
& C(0)=1 .
\end{aligned}
\]
- We will find the values of \(C[i j j]\) for all smaller instances of the problem.
- Although we are interested just in \(c[1, n]\).
- We will consider all possible wayn to choose a root ak among the keys \(a_{i} \ldots a_{j}\)
- The root key \(a_{k}\), the left subtree \(T_{i}^{k-1}\) contains kegs \(a_{i} \cdots a_{k-1}\), and the right subtribe \(T_{k+1}^{j}\) contains kegs \(a_{k+1} \cdots a_{j}\)

- If we count tree travels starting with 1 , the following recurrence relation is obtained.
\[
\begin{aligned}
& C[i, j]=\min _{i \leq l \leq j}\left[P-1+\sum_{\delta=1}^{k-1} P_{s} \cdots \text { (level of ass in } T_{i}^{k-1}+1\right) \\
& \left.\left.+\sum_{s=k+1}^{j} P_{S} \text {-(level of as } a_{S} \text { in } T_{k+1}^{j}+1\right)\right] \\
& =\min _{i \leq l \leq j} \Gamma P_{k}+\sum_{s=1}^{k-1} P_{S} \text {-level of } a_{s} \text { in } T_{i}^{k-1} \\
& \left.+\sum_{S=1}^{k-1} P_{S}+\sum_{S=k+1}^{j} P_{S}-\text { level of } a_{S} \text { in } T_{k+11}^{j}+\sum_{s=k+1}^{j} P_{S}\right] \\
& =\min _{i \leq l \leq j}\left[\sum_{s=1}^{k-1} P_{s} \text {-level of } a_{S} \text { in } T_{y}^{k-1}+\sum_{s=k+1}^{j} P_{s} \text { level of as in } T_{k+1}^{y}\right. \\
& \left.+\sum_{S=0}^{n} P_{S}\right] \\
& =\operatorname{Vnin}_{i \leq l \leq j}[c[i, k+]+c[k+1, j]]+\sum_{S=i}^{j} P_{S} \\
& \therefore c[i, j]=\min _{i \leq l \leq j}[c[i, k+1]+c[k+1, j]]+\sum_{s=i}^{j} P_{s} \text { fol } 1 \leq i \leq j \leq n_{-}
\end{aligned}
\]

Example
\begin{tabular}{lcccc}
Keys & 10 & 1 & 2 & 3 \\
& 12 & 16 & 21
\end{tabular}

Frequencies 4263.
\begin{tabular}{c|c|c|c|c|}
\hline 0 & 0 & 1 & 2 & 3 \\
\hline 1 & 4 & 8 & \((0)\) & \((2)\) \\
\hline 2 & 20 & \(26^{(2)}\) \\
\hline 2 & & \(10^{2}\) & \(16^{(2)}\) \\
\hline & & 6 & \(12^{(2)}\) \\
\hline
\end{tabular}

Find \(c[i, j]\).
\[
c[i, j]=\cos +[i]+\cos t j]
\]
\[
l=1
\]
\[
c[0,0]=4
\]
\[
c[1,1]=2
\]
\[
c[2,2]=6
\]
\[
c[3,3]=3
\]
\[
\begin{aligned}
& C[3,3]=3 \\
& l=2 .
\end{aligned}
\]
\[
\begin{aligned}
c[0,1] & =4+2+\min \left[\begin{array}{l}
2 \\
\text { cos en moot is } 0 \\
4 \\
\text { if moot is } 1
\end{array}\right. \\
& =6+2=8
\end{aligned}
\]
\[
c[1,2]=8+6+\min \left[\begin{array}{lll}
6 & \text { if root is } 1 \\
2 & \text { if mol is } 2
\end{array}\right.
\]
\[
=8+2=10^{(2)}
\]
\[
[2,3]=6+3+\min \left[\begin{array}{ll}
3 & \text { it } \operatorname{rosot} \text { is } 2 \\
6 & i f \text { root is } 3
\end{array}\right.
\]
\[
=9+3=12^{(2)}
\]
\[
\begin{aligned}
& \lambda=3=\{(0,1,2),(1,2,3)\} \\
& 4[0,1,2]=4+2+6+\min (10 \text { if rool is ro ie.cont of(1)) } \\
& \begin{array}{r}
4+6=10 \text { if moot is } 1 \text { ie. } \cos) \theta+ \\
\cos \theta 2
\end{array} \\
& \text { (8 if root in } 2 \text { ie. cont of } \cos (0,1) \\
& =12+8=20^{(2)} \\
& C[1,2,3]=2+6+3+\min \{12 \text { if } \operatorname{moctis}, i \cos \operatorname{cof}(2,3) \\
& 2+3 \text { if moot is } 2 \text { i.e conl[r] }+ \\
& \begin{array}{l}
\text { conte } 3 \text {) } \\
(1,2)
\end{array} \\
& =11+5=16^{(2)} \\
& \therefore \text { Minimasm }=16^{(2)} \\
& Q=4 \quad\{(0,1,2,3)\} \\
& c[0,1,2,3]=4+2+6+3+\min \\
& {[16 \text { is moot is o (e. (}(1,2,3)} \\
& 4+12: 16 \text { in reot is } i e . c[c]+ \\
& C[2,3) \\
& 8+3=11 \text { if moot is } 2 \text { i.e. }[[0,1] \text { x } \\
& c[3] \\
& =15+11=26(2)
\end{aligned}
\]

Bincry search tree is

no of comparisons \(=(6 \times 1)+(4 \times 2)+(3 \times 2)+2 \times 3\)
\[
\begin{aligned}
& =6+8+6+6 \\
& =26
\end{aligned}
\]

Algorithm. Optimal BST (P[1.n \(n]\)
Il Finds an optimal binary search tree by dynamic programining. 11 Input: An array \(P[1 \cdots n]\) of search probabilities for a 11 sorted list of \(n\) kegs
II output: Average number of comparisons in suecenful " searches in the optimal BST and table \(R\) of 11 subteen roots in the optimal BST.
for \(i=1\) to \(n d o\)
\[
\begin{aligned}
& C[i, i-1]=0 \\
& C[i, i]=P[i] \\
& R[i, i]=i \\
& C[n+1, n]=0
\end{aligned}
\]
for \(d=1\) to \(n-1\) do 11 diagonal count.
for \(\ddot{c}=1\) to \(n-d \quad d o\)
\[
j=i+d .
\]
minval \(=\infty\).
for \(k=i\) to \(j d o\)
\[
\begin{aligned}
& \text { if } c[i, k-1]+c[k+1, j]<\text { minval } \\
& \text { minval }=c[i, k-1]+c[k+1, j] ; \\
& k \min =k \\
& R[i, j]=\text { kin } . \\
& \text { sam }=P[i] \\
& \text { for } s=i+1 \text { to } j d o \\
& \text { scam }=\text { scum }+P[s] \\
& c[i, j]=\text { minval }+ \text { sum } .
\end{aligned}
\]
retwan \(\subset[1, n] R\).

O/ Knapsack Problem.
Given \(n\) terns of known weights \(w_{1} \ldots \omega_{n}\) and values \(v_{1} \ldots v_{n}\) and knapsack capacity \(w\).
- Find the most valuable subset of the items that fit into the knapsack.
- All the weights and the knapsack's capacity are positive integers.
- Let us consider con instance defined by the first items, \(1 \leq i \leq n\) with weights w,... wi values \(v_{1} \cdots v_{i}\) and knapsack capacity \(j, 1 \leq j \leq \omega\).
L Let \(V[i, j]\) be the value of an optimal solution to this instance.
ie the value of the most valuable subset of the first i items that fit into the knapsack of capacity \(j\).
- We can divide all the subsets of the first items that the knapsack of capacity i into two categoves. 1. Those that do not include the eth item.
2. Those that do.
\[
V[i, j]=\left\{\begin{array}{l}
\max \left[V[i-1, j], V_{i}+V\left[i-1, j-\omega_{i}\right]\right] \text { if } j-\omega_{i} \geqslant 0 \\
V[i-1, j] \text { if } j-\omega_{i}<0
\end{array}\right.
\]

Initial conditions.
\[
\begin{aligned}
& V[0, j]=0 \text { for } j \geqslant 0 \\
& V[\ddot{c}, 0]=0 \text { for } i \geqslant 0
\end{aligned}
\]

Table for solving the knapsack problem.
\begin{tabular}{c|cccc}
& 0 & \(j-\omega_{i}\) & \(j\) & \(\omega\) \\
0 & 0 & 0 & 0 & 0 \\
\(i-1\) & 0 & \(v\left[i-1, j-\omega_{i}\right]\) & \(v[i-1, j]\) & \\
\(i\) & 0 & & \(v[i, j]\) & \\
\(n\) & 0 & & & goal \\
\hline
\end{tabular}

Escmplc
\begin{tabular}{|c|c|c|c|c|}
\hline item & 1 & 2 & 3 & 4 \\
\hline weght & 2 & 1 & 3 & 2 \\
\hline value. & 12 & 10 & 20 & 15 \\
\hline
\end{tabular}
capacity \(w=5\).

Onitially \(v[0, j]=0, \quad v[i, 0]=0\)
1. \(V[1,1], j-w_{i}=1-2<0\)
\[
\begin{aligned}
v[(-1, \dot{j}] & =v[0,1] \\
& =0
\end{aligned}
\]
2. \(v[1,2], j-w]=2-2=0\)
\[
\begin{aligned}
& \max \left[V[i-1, j], v_{i}+v\left[i-1, j-w_{i}\right]\right] \\
& =\max [V[0,2], 12+V[0,0]] \\
& =\max [0,12+0=12] \\
& =12
\end{aligned}
\]
\[
\begin{aligned}
& v {[1,3], j-w i=3-2>0 } \\
& \max \left[v[i-1, j]+v i+v\left[i-1, j w_{i}\right]\right. \\
&= \max [v[0,3]+12+v[0,1]] \\
&= \max [0,12+0] \\
&=12 \\
& v {[1, u], j-w 1=4-250 } \\
& \max [v[i-1, j]+v i+v[i-1, j-w i]] \\
& \max [v[0, u]+12+v[0,2]] \\
&=\max [0,12+0] \\
&= 12
\end{aligned}
\]
\[
v[1,5], j-w_{i}=5-2>0
\]
\[
\begin{aligned}
& V(2,1] j-\infty y=1-1=0 \\
& \max \left(v[i-1, j], v \underline{L}+v\left[i \cdots, j-w_{i}\right]\right] \\
& =\max [v[1,1],-10+v[1,0]] \\
& =\max [0,10+0] \\
& =10 \\
& V[2,3] j-u 2=3-1>0 \\
& \max [v[1,3], 10+v[1,2]] \\
& -\max [12,10+12] \\
& =22 \\
& v[2,5], j-\omega_{2}=5-1>0 \\
& \max [v[1,5], 10+v[1,4]] \\
& -\max [12,10+12] \\
& =22 \\
& V[3,1], j-w_{3}=1-3<0 \\
& V[i-1, j]=V[2,1] \\
& =10 \\
& V[3,3], j-w_{3}=3-3=0 . \\
& \max [v[2,3], 20+v[2,0]] \\
& =\operatorname{mox}[22,20+0] \\
& =22 \\
& v[3,5], j-\omega_{3}=5-3>0 \\
& \max [V[2,5], 20+V[2,2]] \\
& =\max [22,20+12] \\
& =32 \\
& V[4,3] \quad j-w_{k}=3-2>0 \\
& \max [V[3,3], 15+V[3,1]] \\
& =\max (22,15+10) \\
& =25 \\
& y[4,4] ;-w_{k}=4-2>0 \\
& \max [v[3,4], 5+V[3,2]] \\
& \max [30,15+12] \\
& =30 \\
& V[2,4], j-w_{2}=4-1>0 \\
& \max [v[1,4], 0 \operatorname{tv}[1,3]] \\
& =m \alpha x[12,10+12] \\
& =22 \\
& v[3,2], j-w 3=2-3<0 \\
& v[i-1, j]=v[2,2] \\
& =12 \\
& V[3, u] \quad j-w 3=x-3>0 \\
& \max [v[2,4], 20+v[2,1]] \\
& -m a x[22,20+10] \\
& =\text { meer } 30 \\
& \begin{array}{c}
V[4,1], j-w_{4}=1-2<0 \\
v[i-j]=v[3,1]
\end{array} \\
& =10 \\
& v[4,2], j-w_{4}=2-2=0 \\
& \max [v[3,2], 5+v[3,0]] \\
& =\max [12,15+0] \\
& =15 \\
& v[4,5] j-\omega_{4}=5-2>0 \\
& \max [v[3,5], 15+v[3,3]] \\
& =\max [32,10+22] \\
& =\quad 37
\end{aligned}
\]

Maximal value is \(V[4,5]=37\).
We can find the composition of am optimal subset by tracking back the computations of this entry in the table.
\[
V[4,5] \neq V[3,5]
\]
\(\therefore\) item 4 is selected for optimal subset.
\[
\therefore 5-2=3 \text { nemaing weight. }
\]

Latter is represented by element \(V[3,3]\).
\[
V[3,3]=V[2,3]
\]
: 3 is not part of optimal subset.
\[
v[2,3] \neq v(1,3]
\]
\(\therefore\) item 2 is selected for optimal subset.
\(3-1=2\) remaing weight.
\[
v[1,3-1] \text { ie } v[1,2] \neq v[0,2]
\]
\(\therefore\) item 1 is the final post of the optimal subset.
\[
2-2=0
\]
\(\therefore\) Final set \([\) item 1 , item 2, item 4]
item 1- 2, 2
item 2 1,10
item 4 2,15
5, 37

Excomple (B)
\begin{tabular}{|c|c|c|c|c|}
\hline Nem & 1 & 2 & 3 & 4 \\
\hline weight & 1 & 3 & 4 & 5 \\
\hline value & 1 & 4 & 5 & 7 \\
\hline
\end{tabular}
\begin{tabular}{ccc|c|c|c|c|c|c|c|c|}
\hline weight & value v[i,i] & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline\(w i\) & 1 & & 0 & 0 & 0 & 3 & 0 & 0 & 0 & 0 \\
\hline\(w 2\) & 4 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline\(w 3\) & 4 & 5 & 0 & 1 & 1 & 4 & 5 & 5 & 5 & 5 \\
\hline 145 & 7 & 6 & 1 & 1 & 4 & 5 & 6 & 6 & 9 \\
\hline 1 & 0 & 1 & 1 & 4 & 5 & 7 & 8 & 9 \\
\hline
\end{tabular}
\(V[1,1], j-\omega_{1}=1=1\).
\(\max _{\left.i=(0,1)+v_{1}+v[0,0]\right)}\)
\(v[1,2]=j-\omega_{2}=2-j>0\)
\(\max (0,2)+v_{1}+v[0,1]\)
\(=0+1+0=1\)
\(V[1,3]=3-7>0^{\circ}\)
\(\max (0,3)+v_{1}+v[0.2]\)
Mo \(0+1+0=1\)
\(\operatorname{lrg}_{V[1,7]}=1\)
\(V[3,1] j-103=1-k<0\)
\(V[2,1]=1\)
\(V[3,2]=j-03=2-k<0\)
\(\nu[2,2]=1\)
\(V[3-3]=j-103=3-4<0\) \(V[2,3]=x\)
\(V[3, k]=j-\omega_{3}=4-k=0\)
\(\max (i d \sin , 4], 5+v[2,0])\)
\(\because(5,5+0)=5\)
\(V[3,5]=j-103=5-k>0\)
\(\max (v[2,5], 5+v[2,2])\)
\[
=(5,5+1)=6
\]
\(v[3,6]=(5,5+1)=6\)
\(V[3,7]=(5,5+4)=9\)
\(V[2,1] j-w_{2}=1-6<0\).
\(v[i-1, j]=v[1,1]=1\)
\(V[2,2] ;-\omega_{2}=2-3<0\)
\(V[[-1, j]=V[1,2]=1\)
\(v[2,3]=j-\omega_{2}=3-3=0\)
\(\max (v[1,3],-4+v[1,0])=\max (1,4+10)=4\) \(V[2,4]=j-102=k-3>0\)
\(\operatorname{moxex}(v[1,4] y 4+v[1,1])=\max (1,4+1]=5\)
\(v\left[y_{2} \sigma_{2}\right]=j-\omega_{2}=\sqrt{5}-3>0\)
\(x^{\max (v\{1,5], x+v[1,2\})=\max (1, x+1)=5}\)
\(v[2,7]=7-3 \geq 0\)
\(\max [v[1,7), 4+v[1, k]]=\max (1, x+1)=5\)
\(V[4,1]=j-\omega_{k}=1-5<0\) i.e \(V[3,1]=1\)
\(V[k, 2]=2-5<0\) ie \(V[3,2]=1\)
\(v[4,3]=3-5<0\) ie \(v[3,3]=4\).
\(V[4, u]=4-5<0\) i.e \(v[3,4]=5\)
\(v[4,5]=5-5=0\).
\(\max (v[3,5], 7+v[3,0])=(6,7+0)=7\)
\(v[4,6]=6-5>0\)
\(\max (v[3,6], 7+v[3,1])=(6,7+1)=8\)
\(4[4,7]=7-5>0\)
\(\max (v[3,78,7+v[3,2])=(9,7+1)=9\)
\[
v[4,7]=v[3,7]
\]
\(\therefore\) row ht is not selected
\[
3[3,7] \neq v[2,7]
\]
\(\therefore\) opera 3 is selected
\[
7-4=3
\]

Later to represent by clement \([2,6]\)
\[
v[2,6]+v[1,6]
\]
\(\therefore\) item 2 is selected
\[
3-3=0
\]
\(\therefore\) Final set \(\{i t e m z\), item 3\(\}\)
item 2 3,4
\(\frac{\operatorname{itan} 34,5}{7,9}\)
Algorithm.
\[
\text { O/I KNAPSACK }(P[], \omega[], n, H)
\]
"n number of items. \(M\). capacity
for \(j:=0\) to \(C[0, j]:=0 ;\)
for \(i=0\) to \(n c[i, 0]:=0\)
for \(i:=1\) to \(n\).
for \(j=1\) to \(M\)
if \((w[i]>j) \|\) cant pick item.
\[
\begin{aligned}
& \quad c[i, j]:=c[i-1, j] ; \\
& \operatorname{cbc} \\
& \quad i f(P[i]+c[i-1, j-w(i j])>C[i-1, j]) \\
& \quad C[i, j]:=P[i]+c[i-1, j-w[i j] \\
& e b c \\
& \quad c[i, j]:=c[i-1, j] ;
\end{aligned}
\]
notion \(\in[n, n]\) :
Complexity - \(\theta(n M)\)

IHE TRAVELING SALESPERSON problem
. Let. \(G=\langle v, E\rangle\) be a dineded graph with edge costs \(c_{i j}\).
- The variable \(C_{i j}\) is defined such that \(c_{i j}>0\) for all \(i\) and \(j\)
\(c_{i j}=\alpha_{i} \quad i f(i, j) \notin E\)
- Let \(|v|=n\) and assume \(n>1\)
- A foyer of \(G\) in a directed simple cycle that includes every vertex in \(V\).
- The cont of a tow ar in the scum of the cont of the edges on the foyer.
"The traveling salesperson problem is to find a tower of minimum cost.
- A tour to be a simple pate that starts and ends at vertex 1.
- Every tocer consists of an edge \((1, k)\) for some \(k \in V-\{1\}\) and a path from vertex \(k\) to vertex 1.
The path from vertex \(k\) to vertex 1 goes through each vertex in \(V-\{1, k\}\). exactly once.
- It the tower is optimal, then the path from \(k\) to 1 must be a shortest \(k\) to 1 path going though all vertices in \(v-\{1, k\}\).
- Hence principe opt of optimality hols.
. Let \(g(i, S)\) be the length of a shortest path starting at vertex \(i\), going through all vertices in \(s\), and terminating at vertex 1 .
The function \(g(1-\sqrt[v]{-}\{1\})\) is the length of an optimal sales person tower.

From the principal of optimality it follows that
\[
\begin{equation*}
g(1, v-\{1\})=\min _{2 \leqslant k \leqslant n}\left\{C_{1 k}+g(k, v-\{1, k j)\}\right. \tag{1}
\end{equation*}
\]

Generalizing eq. (1), we obtain (for i\&s)
\[
\begin{equation*}
g(i, s)=\min _{j \in S}\left\{C_{i j}+g(j, S-\{j\})\right\} \tag{2}
\end{equation*}
\]
\(\therefore E_{q} \cdot(2)\) can be solved for \(g(1, v-\{1\})\) if we know \(g(k, v \cdots\{1, k\})\) for all choices of \(k\).
, Clearly \(g(i, \phi)=C_{i 1}, 1 \leq i \leq n\).
- Hance we can use eq.(2) to obtain \(g(i, 5)\) for all \(S\) of size 1.
, Then we can obtain \(g(i, S)\) for \(S\) with \(151=2\), and so on.
Example t
comsiden the graph, the edge lengths ane given by matrix \(C\).

\[
c=2\left[\begin{array}{cccc}
1 & 2 & 3 & 2 \\
0 & 10 & 15 & 20 \\
5 & 0 & 9 & 10 \\
6 & 13 & 0 & 12 \\
8 & 8 & 9 & 0
\end{array}\right]
\]
storting vertex \(=1\).
\[
\begin{aligned}
& g(i, \phi)=c_{i 1} \\
& g(2, \phi)=c_{21}=5 \\
& g(3, \phi)=c_{31}=6 \\
& g(4, \phi)=c_{41}=8 .
\end{aligned}
\]
\(S=1\) consider set of 1 element. ie. \(\{2\},\{3\},\{4\}\).
\[
\begin{aligned}
\operatorname{set}\{2\}, g(2,\{3\}) & =c_{23}+g(3, \phi) \\
& =q+6=15 \\
g(2,\{4\})=c_{24}+g(4, \phi) & =10+8=18 \\
g(3,\{2\}) & =c_{32}+g(2, \phi)=13+5=18 \\
g(3,\{4\}) & =c_{34}+g(4, \phi)=12+8=20 \\
g(4,\{2\}) & =c_{4}+g+g(2, \phi)=8+5=13 \\
g(4,\{3\}) & =c_{4} 3+g(3, \phi)=9+6=15
\end{aligned}
\]
\(S=2\). consider set of 2 elements \(\{2,3\},\{2,4\},\{3, x\}\)
\[
\begin{aligned}
g(2,\{3,4\}) & =\min \left\{c_{23}+g(3,\{4\}), c_{24}+g(4,\{3\})\right\} \\
& =\min \{9+20,10+15\} \\
& =25 \\
g(3,\{2,4\}) & =\min \left\{c_{32}+g(2,\{4\}), c_{34}+g(4,\{2\})\right\} \\
& =\min \{13+38,12+13\} \\
& =25 \\
g(4,\{2,3\}) & =\min \left\{c_{42}+g(2,\{3\}\}, c_{4}+g(3,\{2\})\right\} \\
& =\min \{8+15,9+18\} \\
& =23 .
\end{aligned}
\]
\(S=3\) consider bet of 3 elements \(\{2,3,4\}\).
\[
\begin{aligned}
g(1,\{2,3,4 q)= & \min \left\{c_{12}+g(2,\{3,4\}), c_{13}+g(3,\{g, 4\})\right. \\
& \left.c_{14}+g(4,\{2,3\})\right\} \\
= & \min \{10+25,15+25,20+23\} \\
= & \min \{35,40,43\} \\
= & 35 .
\end{aligned}
\]
\(\therefore\) An optimal tower of the graph has length 35.
- A tower of this length can be constructed if woe retain with each \(g\left({ }^{\circ}, s\right)\) the value of \(j\) that minimizes the right hand side of equation (2). Let \(J(i, s)\) be terr value.
Then \(J(1,\{2,3,4\})=2\).
Thus the tower starts from, and goes to 2
The remaining toke r obtained from \(g(2,\{3,4\})\)
\[
\therefore J(2,\{3,4\})=4
\]

Thus the next edge is \((2,4)\)
The remaining tokes is for \(g(4,\{ \}\})\)
\[
J(4,\{3\})=3
\]
\(\therefore\) The optimal token is \(1,2,4,3,1\)

Algorithm
\[
\begin{aligned}
& c(s, j)=\min c(s-\{j\}, \dot{e})+d(i, j\} \text { where } i \in S_{i \neq j} \text { and } \\
& c(\{1\}, 1)=0 .
\end{aligned}
\]
for \(s=2\) to \(n\) do
for all subsets \(s \in\{1,2,3 \cdots n\) of size \(S\) and containing 1
\[
c(s, 1)=\alpha .
\]
for all \(j \in s\) and \(j \neq 1\)
\[
c(s, j)=\min \{(c(s-\{j\}, i)+d(i, j) \text { for } i \in S \text { and }
\]
netwan min \(c(\{1,2,3 \cdots, n\}, j+d[j, i]\)

Time complexity \(=O\left(2^{n} \cdot n^{n}\right)\).
Example 2
Example 3
\[
C=\begin{gathered}
1 \\
2 \\
3 \\
4
\end{gathered}\left[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
1 & 2 & 9 & 10 \\
15 & 7 & 0 & 4 \\
6 & 3 & 12 & 0
\end{array}\right] \quad\left[\begin{array}{cccc}
0 & 1 & 15 & 6 \\
2 & 0 & 7 & 3 \\
9 & 6 & 0 & 12 \\
10 & 4 & 8 & 0
\end{array}\right]
\]

Starting vertex \(=1\).
\[
\begin{aligned}
& g(i, \phi)=c i 1 \\
& g(2, \phi)=1, g(3, \phi)=15, g(4, \phi)=6 .
\end{aligned}
\]
\(S=1\) consider set of 1 element ie \(\{2],\{3\},\{4\}\).
\[
\begin{aligned}
& s=1 \text { cons } \\
& g(2,\{3\})=c_{23}+g(3, \phi)=6+15=21 \\
& g(2,\{4\})=c_{24}+g(4, \phi)=4+6=10 \\
& g(3,\{2\})=c_{32}+g(2, \phi)=7+1=8 \\
& g(3,\{4\})=c_{34}+g(4, \phi)=8+6=14 \\
& g(4,\{2\})=c_{42}+g(2, \phi)=3+1=4 \\
& g(4,\{3\})=c_{43}+g(3, \phi)=12+15=27
\end{aligned}
\]
\(S=2\) consider set of elements \(\{2,3\},\{2,4\},\{3,4\}\). hun
\[
\begin{aligned}
g(2,\{3,4\}) & =\min \left\{c_{23}+g(3,\{4\}), c_{24}+g(4,\{3\})\right\} \\
& =\min (6+14,4+27)=20 \\
g(g,\{2,4\}) & =\min \left(c_{32}+g(2,24\}\right), c_{34}+g(4,\{2\}) \\
& =\min (, 7+10,8+4)=12 \\
g(4,\{2,3\}) & =\min \left(c_{42}+g(2,\{3\}), c_{43}+g(3,\{2\})\right) \\
& =\therefore(3+21,12+8)=20
\end{aligned}
\]
\(S=3\) consider set of 3 elements \(\{2,3,4\}\).
\[
\begin{aligned}
& g(1,\{2,3,4\})=\min \left\{c_{12}+g(2,\{3,4\}), c_{13}+g(3,\{2,4\})\right. \\
& \left.c_{14}+g(4,\{2,3\})\right\} \\
& =\min \left\{\begin{array}{c}
2+20,9+22,10+20\} \\
22
\end{array}\right. \\
& =21 \\
& g(1,\{2,3, n\}) \rightarrow J(1,\{2,3, n\})=2 \\
& g(2,\{3,4 y) \rightarrow J(2,\{3, x\})=3 \\
& g(3,\{4\}) \rightarrow](3,\{x\})=4 \\
& 1-2-3-x-1
\end{aligned}
\]

RELIABILIY DESIGN.
- Reliability design is used to solve a problem with a multiplicative optimization function.
The problem is to design a system that is composed of several devices conneded in series.

- Let \(\pi_{i}\) be the reliability of device \(D\) : ie. \(\pi_{i}\) in the probability that device i will function properly. - The reliability of the entire system in Mri.
- Even if the individual devices are very reliable the reliability of the system may not be very good.
- Multiple copies of the same device type are connected in parallel through the case of switching conceits.

- The switching circuits determine which devices in any given group are functioning properly.
They than make use of one such device at coach stage.
- If stage \(i\) contains \(m_{i}\) copies of device \(D_{C}\), than the probability that all mi s have malfunction is
\[
\left(1-n_{i}\right)^{m_{i}}
\]

Hence the reliability of stage a becomes
\[
1-\left(1-\pi_{i}\right)^{m_{i}}
\]

In any practical situation, the stage reliability is a little lass than 1-(1-9i) mi because the switching cirnaits themselves are not fully reliable.

Let un assume that the reliability of stage i is given by function \(\phi_{i}\left(m_{i}\right), 1 \leq n\).
The reliability of the system of stages is \(\prod_{1 \leq i \leq n} \oint_{i}\left(m_{i}\right)\).
- Let \(c_{i}\) be the cont of each unit of device \(c^{\circ}\)
\(c\) be the maximum allowable cost of the system. being designed.
To solve the following maximization problem
\[
\text { maximize } \Pi_{1 \leq i \leq n} \phi_{i}\left(m_{i}\right)
\]
subject to \(\sum_{1 \leq i \leq n} C_{i} m_{i} \leq C ; m_{i} \geqslant 1 \quad q 1 \leq i \leq n\).
We can assume each \(c_{i}>0\) and each \(m_{i}\) must be in the range \(1 \leq m_{i} \leq u_{i}\) where
\[
u_{i}=\left[\left(c+c_{i}-\sum_{i}^{n} c_{j}\right) / c_{i}\right]
\]

The copper bound \(u_{i}\) follows from the observation that \(m_{j} \geqslant 1\).
- An optimal solution \(m_{1}, m_{2} \cdots m_{n}\) is the rescelt of sequence of decision for each mi.
- Let \(f_{i}(x)\) represent the maximum value of \(\Pi_{i \leq j \leq i} \phi\left(m_{i}\right)\) subject to the constraints \(\sum_{i \leq j \leq i} C_{j} m_{j} \leq x\). and \(1 \leq m_{j} \leq u_{j}, 1 \leq j \leq i\).
Then the value of an optimal solution is \(f_{n}(c)\).
\[
f_{n}(c)=\max _{1 \leq m_{n} \leq u_{n}}\left\{\phi_{n}\left(m_{n}\right) f_{n-1}\left(c-c_{n} m_{n}\right)\right\}
\]

Fir any \(f_{i}(x), i \geqslant 1\), ties equation generalizes to
\[
f_{i}(x)=\max _{1 \leq m_{i} \leq u_{i}}\left\{\phi_{i}\left(m_{i}\right) f_{i-1}\left(x-c_{i} m_{i}\right)\right\}
\]
clearly \(f_{0}(x)=1\) for all \(x, 0 \leq x \leq C\). .
- Let \(s^{i}\) consist of tuples of the form (\(f, x\)), where \(f=f_{i}(x)\).
- There is at mont one tuple for each different \(x\) that resells from a sequence of dimensions on \(m_{1}, m_{2} \ldots m_{n}\) The dominance rale \(\left(f_{1}, x_{1}\right)\) dominates \(\left(f_{2}, x_{2}\right)\) if \(b\) \(f_{1} \geqslant f_{2}\) and \(x_{1} \leq x_{2}\) holds for this problems too.
- Hence, dominated tuples can be discarded from si.

To design a there stage system with device fypes \(D_{1}, D_{2}\) and \(D_{3}\). The costs are \(\$ 30, \$ 15\) and \(\$ 20\) respectively. The cost of the system is to be no moe than \(\$ 105\). The reliability of each device type is is, w 8 and, 5 suespechively.

BACKTRACKING.
1. The general methods.
- In the search for fundamental principles of algorithm design, backtracking represents one of the most general techniques.
- Tee name backtrack was first coined by D. H. Lehman on the 1950s.
Sn many applications of the backtrack method, the desired solution is expressible as an \(n\)-triple \(\left(x_{1}, x_{2} \cdots x_{n}\right)\), where the \(x_{i}\) are chosen from some finite set \(s_{i}\)
- Often the problem to be solved calls for finding one vector that maximizes(or minimizes n satisfies) a ceretzrie criterion funchion \(P\left(x_{1}, x_{2} \cdots x_{n}\right)\).
Sometimes it seeks all vectors that satisfy P.
- Sceppose mi is the size of set si. Then there are \(m=m_{1 m 2} \ldots m_{n} n\)-tuples that are possible candidates for satisfying the function \(P\).
The brute force approach cooceld be to form all These \(n\)-tuples, evaluate each one with \(p\), and save Those cohich yield the optimcem.
The badtrack algorithm has the ability to ged the same answer coith far fewer than m traits.
- cts basic idea is to build up the solution veter one component at a time and to use modified criterion functions \(P_{i}\left(x_{1}, x_{2} \ldots x_{i}\right)\) to test whether the vector being formed has any chance of success.
Advantage: If it is realized that the partial vector \(\left(x_{1}, x_{2} \cdots x_{i}\right)\) con in no way to lead to on optimal solution, then \(m_{i+1} \cdots m_{n}\) possible test vectors can be ignored entirely.

Thong of the problems we solve using backtracieng stequine that all the solutions satisfy de complex set of constraints.
- Constanaints can bo divided into two categories 1. Explicit 2. Implicit.
- Explicit constacionts are males that mestriot each \(x i\) to take on values only from a given set.
ex (0) \(x_{i} \geqslant 0\) a \(x_{i}=0\) a \(1, \quad l_{i} \leqslant x_{i} \leqslant x_{i}\).
(2) \(S_{i}=\{\) all nonnegative real non \(\}, S_{i}=\{0,1\}\).

Smplicit constraints are ruben that determine which of the tuples en the solution space of \(I\). satisfies tee criterion function.
- Teas Implicit constraints describe the coy in which the \(x_{i}\) must relate to each other.
Example: 8-queens.
- A clasic combinatorial problem is to place eight queens on an \(8 \times 8\) chessboard sotaat no two attack. ice no two of teem are on the same row, column on diagonal.
- All solutions to the 8 -queens problem con therefore be represented as 8 -triples \(\left(x_{1}, x_{2} \cdots x_{8}\right)\), where \(x_{i}\) io the column on which queen \(i\) in to be placet on noes 8 . The explicit constraints losing this formulation ane \(S_{i}=\{1,2,3,4,5,6,7,8\}, 1 \leq i \leq 8\).
- The implicit constraints for this problem ore teat no two \(x_{i}^{\prime}\) s can be the same and no two queens can be on the same diagonal.

Example 2: Sem of subsets
- Given positive numbers \(w_{i}, 1 \leqslant i \leqslant n\), and \(m\), tears problem calls fer finding all subsets of the w: whose seems cere \(m\).
- All solutions are \(k\)-tuples \(\left(x_{1}, x_{2} \cdots x_{k}\right)!\leqslant k \leqslant n\). and different solcefions mag have different-mized freples.
- The explicit constraints nequine \(x: \in\{j / j\) is an integer and \(1 \leqslant j \leqslant n\}\).
The implicit constraints nequine tact no two be the same and that the sem of the corresponding \(w_{i}^{\prime \prime} \Delta\) be m.
\(c x, n=4,\left(w_{1}, w_{2}, w_{3}, w_{4}\right)=(11,13,24,7)\), and \(m=31\).
subsets are (\(11,13,7\)) and \((24,7)\).
- Backtracking algorithms determine problem solutions by systematically searching the solution space for the given problem instance.
- This search is facilitated by using a free organization for the solution space.
- For a given solution space mong fare organizations mos y be ponible.
- Let \(\left(x_{1}, x_{2} \ldots x_{i}\right)\) be a path from the root to a node in a state space tree.
- The tree suganization of the solution space is referred to as the state space free:
- Let \(T\left(x_{1}, x_{2} \ldots x_{i}\right)\) be the set of all possible values for \(x_{i+1}\) such that \(\left(x_{1} x_{2} \cdots x_{i+1}\right)\) is also a path to a problem state.
\(\cdot T\left(x_{1}, x_{2} \cdots x_{n}\right)=\phi\).

We anscume the existence of bocending function \(B_{i+1}\) reach that if \(B_{i+1}\left(x_{1} x_{2} \ldots x_{i+1}\right)\) is false for a path \(\left(x_{1}, x_{2} \cdots x_{i+1}\right)\) from the sot node to a problem state, ta an the path cant be extended to reach on answer node.
- Thus the candidates for position \(i+1\) of the solcetzion vector \(\left(x_{1}, x_{2} \ldots x_{n}\right)\) are those values which are generated by \(T\) and satisfy \(B i+1\). Reccersive Badtracking Algorithm: Algorithm. Backtrack (k).
"This schema describes the backtracking procen 11 using necousion. On entering the first \(k-1\) It values \(x[1], x[2] \cdots x[k-1]\) of the solution Hector \(x[1: n]\) have been assigned \(x[]\) and \(n\) are global.

之。
for (each \(x[k] \in T(x[1], \cdots x[k-1]) d o\)
\(\{\)
if \(\left(B_{k}(x[1], x[2] \cdots x[k]) \neq 0\right.\) then
\(\{\)
if \((x[1], x[2], \cdots x[k]\) is a path to cen answer node) then
write \((x[1: k])\);
if \((k<n)\) then Backtrack \((k+1)\); \}
1
\(\}\)

General Iterative backtracking method:
Algorithm 1Backrack(n)
11 This schema describes the backtracking process.
II All solutions are generated in \(r[1: n]\) and "printed as soon as they are determined.
i \(k:=1\);
while \((k \neq 0)\) do
\{
if (there remains an untried.
\(x[k] \in T(x[1], x[2] \cdots x[k-1])\) and
\(B_{k}(x[1], \cdots x[k])\) is true \()\) then
\(\frac{1}{2}\) if \((x[1], \cdots x[k]\) is a path to an answer node) then
write (\(x[1: k])\);
\(k:=k+1 / /\) consider the next set.
\}
else
k: K-1; Il Back frack to the previous sf.
\(\xi\)
y
n-Queens Problem.
- The problem is to place \(n\) queens on an \(n-b y-n\) chessboard so that no two queens attack each other by being in the same now \(g\) in the same column or on the same diagonal.
. For \(n=1\), the problem has a trivial solution, and it is easy to see that there is no solution for \(n=2\) i \(n=3\). Let us consider focer-queen problem and solve it by backtracking technique
- Since each of the foyer queens has to be placed in its own row, all we need to do is to consign a column for each queen on the board

- We start with the empty board and then place Queen 1 in the first possible position of its row, which is in column 1 and row 1.
\[
(1,1) \leftarrow Q 1
\]
-Then we place Queen 2, after trading unsuccessfully column 1 and 2 , in the first acceptable position for it, which is square \((2,3)\), the square in row 2 and column 3 .
- This proves to be a dead and because there is no acceptable position for queen 3.
- So, the algorithm backtracks amp puts queen 2 in the next possible position at \((2,4)\).
-Then queen 3 placed at \((3,2)\), which proves to be another dead end.
- The algorithm then backtracks all the way to queen 1 and moves it to (1,2)

Queen 2 then goes to \(\langle 2,4\rangle\), Queen 3 to \((3,1)\) and Queen 4 to (4,3), which is a solution to the problem

\(x\) denotes an unsuccessful attempt to place a queen in the indicated column.

The numbers above the nodes indicate the order in which the nodes are generated.

*
\(\underset{x}{2}\)

. Let \(\left(x_{1}, x_{2} \ldots x_{n}\right)\) represent a solution in which \(x_{i}\) is the column of the th now where the th queen in placed.
The \(x_{i}^{\prime \prime}\) will all be distinct since no two queens can be placed in the some column.
- If we imagine the chessboard square being numbered as the indices of the two-dimensional array a \([1: n, 1: n\)], then we observe that avery element on the same diagonal that runs from the upper left to the lower right has the some row-column value.
- All these squares have a row-column value of 2 . - Also, every element on the some diagonal that goes from the upper right to the lower left has the same now + column value.
- Suppose two queens are placed at positions (i, j) and \((k, l)\).
Then by the above they are on the same diagonal only if
\[
i-j=k-l \quad \& \quad i+j=k+l \text {. }
\]

The first equation implies
\[
j-l=i-k
\]

The second implies
\[
j-l=k-i
\]

Therefore two queens lie an the same diagonal if and only if \(|j-l|=|i-k|\).
Place \((k, i)\) returns a boolean value that is true if the \(k^{t h}\) queen com be placed in column". - ot tents both whether i is distinct from all previous values \(x[1] \cdots x[k-1]\) and wether there is no other
queen on the some diagonal.
Ito computing time is \(o(k-1)\).
- Using place, we can refine the general backtracking method NQueens (\(1, n\)).
Algoittim Place \((k, i)\)
I/ Returns true if a queen can be placed in \(k^{t h}\) rocs 11 and th colcamn. otconcuise it returns false. \(x[]\) is "Aa global array whose first \((k-1)\) values hove been set. I \(A b \Delta(\pi)\) returns the absolute value of \(\pi\).
\(\{\) for \(j:=1\) to \(k+1\) do
if \((C x[j]=i)\) on /1 Two in the same colcemn.
\(\operatorname{CAbs}(x[j]-i)=A b \Delta(j-k))\) II ar in the some diagonal ten return false;
zetrern face;
\(\xi\).
Atgeithm NQueens \((k, n)\)
Il Using backtracking, this procedure prints all 11 pomible placements of \(n\) queens on an \(n \times n\) "Cherboand so that they are nonattacking.
\[
\{\text { for } e=1 \text { to } n \text { do }
\]
\(\{\)
if Place \((k, i)\) teen
\&
\[
x[k]:=i
\]
if \((k=n)\) then write \((x[1: n])\);
\[
\ln e
\]
\(N Q\) weens \((K+1, n)\);
1
\(\}\)

Sum of Scebsets.
- Given \(n\) distend positive numbers (usually called weights) and we desine to find all combinations of these nursers whose seems are m .
This is called the sum of subsets problem.
- we coceld fromutate this problem using either fixed. on varioble-sized trebles.
- We consider a backtracking solution using the fixed tuple size stantegy.
- The dement \(x_{i}\) of the solution vector is either one on zero depending on whether the weight \(w i\) is included or not.
- The children of any node dene easily generated.
- For a node at level i the left child corresponds to \(x_{i}=1\) and the right to \(x_{i}=0\).
- A simple choice for the bocending frenction is
\[
\begin{aligned}
& B_{k}\left(x_{1}, \cdots x_{k}\right)=\text { true if } f \\
& \sum_{i=1}^{k} w_{i} x_{i}+\sum_{k=k+1}^{n} w_{i} \geqslant m
\end{aligned}
\]
- Clearly \(x_{1} \cdots x_{k}\) cant lead to an answer node if this condition is not satisfied.
- The bocanding fonchiom can be strengthened if we assume that wis are initially in nondecreabing order.
, \(x_{1}, \ldots x_{k}\) cant lead to an answer node if
\[
\sum_{i=1}^{k} \omega_{i} x_{i}+w_{k+1}>m
\]
\(\therefore\) The bounding function is
\[
B_{k}\left(x_{1} \cdots x_{k}\right)=\text { trace if } \sum_{i=1}^{k} w_{i} x_{i}+\sum_{i=k+1}^{n} w_{i} \geqslant n .
\]
and \(\sum_{i=1}^{k} \omega_{i} x_{i}+\omega_{k+1} \leq m\).

Since over algorithm coll not make use of Bn, we need not be concerned by the appearance of \(\omega_{n+1}\) in this function.
- Algaithim avoids competing \(\sum_{i=1}^{k} w_{i} x_{i}\) and \(\sum_{i=k+1}^{n} w_{i}\) each time by keeping these values in variables \(s\) and \(\pi\) respectively.
- The algaitam ancemes \(\omega_{1} \leq m\) and \(\sum_{i=1}^{n} \omega_{i} \geqslant m\).

The initial call is Scam of Sub \(\left(0,1, \sum_{i=1}^{n} \omega_{i}\right)\)
Algorithm. Scam Of Sue (s, \(k, x\)).
1 Find all subsets of w[1:n] that sem to m . "The values of \(x[j], 1 \leqslant j<k\), have already been II determined. \(s=\sum_{j=1 k}^{k-1} w[j] * x[j]\) and \(n=\sum_{j=k}^{n} w[j]\).
"The w[j]'i are in nondecreasing enter. It is 11 assermed that \(w[1] \leq m\) and \(\sum_{i=1}^{n} w[i] \geqslant m\).
\(\left\{\right.\) Il Generate left child. Note \(s+w[k] \leq m\) since \(B_{k-1}\) is true, \(x[k]=1 ;\)
if \((s t w[k]=m)\) then write \((x[1: k])\);
It Subset found. There is no recursive coll here \(\|\) as \(\omega[j]>0,1 \leq j \leq n\).
\[
\text { eve if }(s+w[k]+w[k+1] \leq m]
\]
than Scemof Sab \((s+\omega[k], k+1, \eta-\omega[k])\);
thenerate right child and evaluate Bk.
\[
i f((s+r-w[k] \geqslant m) \text { and }(s+w[k+1] \leq m)) \text { teen }
\] \(\{\)
\[
x[k]:=0
\]

Scum 0 Sub (s, \(k+1, \pi \cdots w[k]) ;\)
\(\}\)
\(\}\)

Example.
Let \(x=6, w[1: 6]=\{5,10,12,13,15,18\}\) and \(m=30\).
Find all possible subsets of \(w\) that sean to \(m\). Draw the potion of the state space tree that is generated.
The mectongula note. list the values of \(s, k\) and in on each of the calls to Sum of Scab.
- Circular nodes represent points at which subsets with seems \(m\) are printed out.
\[
\begin{aligned}
& w=\{5,10,12,13,15,18\} \\
& A=(1,1,0,0,1), B=(1,0,1,1) \quad C=(0,0,1,0,0,1) \\
& \sum_{i=1}^{6} w_{i}=73 .
\end{aligned}
\]

Portion of state space tree.

Thess tree contains only 23 redtongulan nodes. The full tree fee \(n=6\) contains \(2^{6}-1=63\) nodes from obwich calls could be made.
Excomple
Let \(\omega=\{5,7,10,12,15,18,20\}\) and \(m=35\). Find all possible scebsets of w that sur n to m . Dene the portion of the state space trace that is generated.

GRAPH COLORING.
- Let \(G\) be a graph and m be a given positive integer.
- We wont to discover whetter the nodes of \(G\) can be colored in such a way that no two adjacent rod es have the same color get only \(m\) colors are used.
- This is termed the m-colorability decision problem.
- If \(d\) is the degree of the given graph, teen if can be colored with \(d+1\) colors.
- The m-colrability optimization problem asks for the smallest integer \(m\) for which the graph \(G\) can be colored.
- This integer is referred to as the chromatic number of the graph.

- This graph con be colored with three colors 1,2, and 3.
- The cols of each node is indicated next to it.
- It can also be seen that three colors are needed to color this graph and hence this graphis chromic number is 3 .
- A graph is said to be planner iff it can be drain in a plane in such a cory that no two edges cross each other.
- A famous special case of the m-colorability decision problem is the 4 -color problem for planar graphs. - Given a map, can the regions be colored in such a way that no two adjacent regions have the some color ye only four colors are needed?

A map can easily be traansfrumed into graph.
- Exch region of the map becomes a rode, and if two regions are adjacent than the corresponding nodes are joined by an edge.

rap.
This map requires fokker colobus.
- We ane determining all tee different coroyso in which a given graph conn be colored using at mont m colors.
- Suppose we represent a graph by its adjacency mataixe \(G[1: n, 1: n]\), where \(G[i, j]=1\) if if \((i, j)\) is an edge of \(G\) and \(G[i, j]=0\) staerwise.
The colors cere represented by the integers \(1,2 \ldots \mathrm{~m}\) and the solutions are given by the \(n\)-tuple \(\left\{x_{1}, \ldots x_{n}\right\}\). where \(x_{i}\) is the cols of nod \(i\).
The conderlying state space tree used is a tree of degree \(m\) and height \(n+1\).
- Each node at level i han m children corresponding to the \(m\) pomible ousignments to \(x_{i}, 1 \leq i \leq n\).
- Nodes at level \(n+1\) are leaf nodes.

The rate space tree when \(n=3\) and \(m=3\).

Algroathm. m(oloring (k)
/T Tess algrottim war formed wing the necursive backtrocking "Achema. The groph is represented by its boolean adjacency 4 matrix \(G[1: n, i: n]\). All amignments of \(1,2 \cdots m\) to the vertices "O of the graph such that adjacent vertices are ansigned It distinct integers are prionted. K is the index of the next vertex 11 to color.
inepeat
§ " Generate all legal anigrments for \(x[k]\)
NextValue(k); II Assign to \(x[k]\) a legal color.
if \((x[k]=0)\) then return \(/ 1\) wo new color possible.
if \((k=n)\) then I/ At most \(m\) coldre have been used to color
write \((x[1: n])\); tee \(n\) verfices.
else mColotoing \((k+1)\);
\}centil (fealse);
\}
Agoeitum NextValue (k).
\(11 x[1] \cdots x[k-1]\) have been assigned integer values in the rounge \(\|[1, m]\) such teat adjacent vertices have diotinct integers. A Il value for \(x[k]\) is deferminat in the range \([0, m], x[k]\) is anigned It the next highest numbered color while moontaining distinctuens freme tithe adjocent vertices of vertex \(k\). If no such color exeists, then \(r[k]\) is 0 . \&repeat.
\(\{x[k]:=(x[k]+1) \bmod (m+1): / l\) next highest color. if \((x[k]=0)\) then xetwri; "All aolors have been used.
for \(j=1\) to \(n\) do
\&llcheck if this color is distinct from adjacent colsus.
\[
\text { if }((G[k, j] \neq 0) \text { and }(x[k]=x[j]))
\]
\(\| 9 b(k, j)\) is End edge and if adj verticer have the same colot.
the break;
if \((j=n+1)\) then retwin; // New color found.
y contil Cbalse); Il oterwise trag to find another color.
\(\xi\)

HAMILTONIAN CYCLES
- Let \(G(V, E)\) be a connected graph with nvestices. - Hamiltanion cycle is a rocund-trip path along ' \(n\) ' edges of \(G\) that visits every vertex once and retwers to its starting position.
- In other words, it begins at some vertex \(v, \in G\) and vertices of \(G\) are visited in the aden \(v_{1} v_{2} \cdots v_{n+1}\); then the edges \(\left(v_{i}, v_{i+1}\right)\) are in \(E, 1 \leq i \leq n\), and \(v_{\text {, }}\) are distinct except for \(v_{1}\) and \(v_{n+1}\) which are equal.

The Hamiltonian cycle for the graph are
\[
\begin{aligned}
& 1-2-8-7-6-5-4-3-1 \\
& 1-3-4-5-6-7-8-2-1
\end{aligned}
\]

The backtracking solution vector \(\left(x, \ldots x_{n}\right)\) is defined so that \(x_{i}\) represents the eth visited venter of the proposed cycle.
- State space tree.
1. The children of node 1 are nodes that ane adjacent to 1
2. Tee adjacent nodes of 2 are \(1,3,8, \because 1\) is already traversed only 3 \& \& are represented.

3. The adjacent (3) are 1,2,4,6. Since 1,2 are traversed. only 4 and \(t\) are represented.

4. The adjacent of (4) care 3,5. Since 3 are already visited so 5 only represented.

5, The adjacent of are 4,6. Since 4 is abreaty visited iso sonly represented.

6 The adjacent of 6 ane 3,5,7. Since 3,5 are already visited, only 7 in represented

7. The adjacent of 7 are, \(1,6,8\). Since 1,6 are abready traversed. only of is represented.

\& The adjacent nodes of 8 are 2, in, 7. Since Both are traversed.
Q. Backtrack and search for alternate solution.

Backtracked edges are represented with darted edges. Continuing in the some way we ge the following tree.

Algorithm Hamiltonian (K)
"This algorithm uses the recursive formulation 11 of backfracking to find all the Itamiltanion 11 cycles of a graph. The graph is stored \(I\) as on adjacency matrix \(G[1: n, 1: n]\), 12 All cycles begin at node 1.
q
repeat
\{" Generate values fo \(x[k]\).
Next value (\(k\)) // Assign a legal next value to r \([k]\)].
if \((x[k]=0)\) then return;
if \((k=n)\) then write \((x[1 ; n])\);
else Hamiltonian \((k+1)\);
GLentil (false);
\(\}\).

Algorithm: Next Value (k).
" \(x\left[\mid: k_{\infty}-1\right]\) is a path of \(k-1\) distinct vertices, of \(x[k]=0\), \(I\) then no vertex has as yet been assigned to \(x[k]\),
"After execution, \(x[k]\) is assigned to the next "heighest numbered vertex which does not already "appear in \(x[1 ; k-1]\) and is connected by an "edge to \(x[k-1]\). Otherwise \(x[k]=0\). If \(k=n\) then Is in addition \(x[k]\) is connected to \(x[1]\).
is repeat.
量 \(x[k]:=(x[k]+1) \bmod (m+1)\); /1 next vertex.
if \((x[k]=0)\) then reform;
if \((G[x[k-1], x[k]) \neq 0\) then
\(\{112 s\) there any edge?
for \(j:=1\) to \(k-1\) do
if \((x[j]=x[k])\) then break; Il check for distinctness.
if \((j=k)\) then \(N\) of true, then the vertex is district.
if \((c k<n) s((k=n)\) and
\[
G[x[n], x[1]] \neq 0)
\]
then return;
\(\}\)
\(\} \operatorname{contil}\) (false);
\(\}\).

BRANCH AND BOUND
General Retliod:
- Branch and Bound refers to all state space search methods in which all children of the E-node are generated before any other live node can become the E-node.
- A BFS-like state space search will be called FIFO securch as the list of live nodes is a Firest-in-First-out list (or queue).
- A D-search like state space search will be called LIFO search as the list of live node to a Last-in-Fiosest out list (stack).
LEAST COSTCLC) SEARCH:
- In both 2IFO and FIFO branch and bound, the selection rale for the next E-node does not give any preference to a node that has a very good choice of getting the search to an answer node quickly.
- The search for an answer rode can be speeded by using swanking function \(\hat{c}(\cdot)\) for live nodes. The next E-node is selected an the bouses of this ranking function.
- The ideal cory to assign ranks would be on the basis of cost needed to reach on answer node from the live node.
- For any node \(x\), the cost could be
1) The number of nodes in the subtree \(x\) teat need to be generated before an answer node is generated.
2. The number of levels the nearest cunscoer node is from \(x\).
- The difficulty with using either of these ideal cost functions is that competing the cost of a node resually involves a search of the sceptre \(x\) for an canscoer node.
- Hence, by the time the cost of a node is determined, that subtree has been searched and there is no need to explore \(x\) agon \(n\).
- For this reason, search olgowthmis casually rank nodes only on the basis of an estimate \(\hat{g}(\cdot)\) of their cost.
- Let \(\hat{g}(x)\) be an estimate of tee additional effort needed to reach an answer node from \(x\).
\[
-\operatorname{Now} \hat{c}(x)=f(h(x))+g^{1}(x)
\]
- where \(h(x)\) is the cost of reaching \(x\) from the root and \(f(\cdot)\) is any nondecreasing function, - A secret strategy that uses \(\hat{c}(x)=f(h(x))+\hat{g}(x)\) to select the next E-node would always choose for rets next E-node de live rode with least \(\hat{c}(\cdot)\)
- Hence, the search strategy is called an LC-search.
. BF:S and D-search are special cases of LC-search.

The olgaxtlim cases two functions least th) and Adder). to delete and a live node from on to the list of live nodes, raspedively.
- Least () finds a live node with least (C). Tais rode is deleted from the list of live nocks and retrerned. - Add \((x)\) odds the new live node \(x\) to the list of live nodes. listnode \(=\) anecord \{ listnode * next, * parent; float coot; \}
Algorithm, LCSearch (t).
Il Search \(t\) for an answer rode.
I of *t is ar answer node then ocafput \(* t\) and qefarn;
\[
E:=t \| E-\operatorname{nod} \rho
\]

Initialize the list of live node to be empty; repeat
\(\{\).
"for each child \(x\) of \(E\) do
\(\{\) if \(x\) is on answer node teen ocetput the path from \(x\) to \(t\) and return:
Add(\(r\)); \(11 x\) is a new live node.
3 \((x \rightarrow\) parent \():=E ; / /\) pointer for path to root.
if there are no mate live nodes then. 2
write ("No answer node");
netrenv:
5.
\(E:=\) Least () ;
S Lentil (false);
\(\}\).

If we we \(\hat{g}(x)=0\) and \(f(h(x))=\) level of node \(x\), then a LC-search generates nodes by levels.
This is enentially the same as a BFS.
- If \(f(h(x))=0\) and \(\hat{g}(x) \geq \hat{g}(y)\) whenever \(y\) irs a child of \(x\), then the search is essentially a D-search.
- An LC-search coupled wite bocending function is called an LC branch and bound search.
- In LC-searches, cost funchion. (c.) defined as follows.
- If \(x\) is an answer node, then \(c(x)\) is the cost of reaching \(x\) from the root of the state space tree.
- If \(x\) is not an conswer node, then \(e(x)=\infty\) providing the subtree \(x\) contains no answer node,
- Otherwise cox) equals the cost of a minimum cost answer node in the subtareex.
. \(\hat{C}(\cdot)\) coth \(f(h(x))=h(x)\) is an appronceimation to \(C(\cdot)\).
- \(C(x)\) is referred to as the cost of \(x\).

Control Abstraction for LC -Search.
- Let \(t\) be a state space trice and \(c(c)\) a cost function for the nodes int of in \(t\), then cox) is the minimum cost of any answer node in the sabtree with roof \(x\).
Thus, \(c(t)\) is the cont of a minimum-cost canscoser node in \(t\).
- LCSearch uses \(\hat{c}\) to find cen answer node.
traveling salesperson.
- Let \(G=(V, E)\) be a direded graph.
- Let \(c_{i j}\) equal the cost of edge \(\langle i, j\rangle\)
- \(C_{i j}=\alpha\) if \(\langle i, j\rangle \neq E\) and let \(|V|=n\).
- We can assume that every tower starts and ends at vertex 1.
- The solution space \(S=\{1, \pi, 1 / \pi\) is permutation of \((2,3 \ldots n)\}\).
- Let \(\hat{c}(A)\) be the length of the path defined at node \(A\).
- State space tree for Traveling Salesperson with \(x=4\) \& \(i_{0}=i_{4}=1\).

- The path defined at node 6 is \(i_{0}, i_{1}, i_{2}^{5}=1,2, n\). consisting of \(e d g e s\langle 1,2\rangle\) and \(\langle 2,4\rangle\).
- A better \(\hat{c}(\cdot)\) can be obtreined by using the reduced cost matrix of \(G\).
- A row (column) is said to be reduced iffy it contains atleast one zero and all remaining entries are non-negative.

A matrix is reduced if every row and column is reduced.
- The cost of edge \(\langle i, j\rangle\) can be obtained as follows.
1) Change all entries in row \(i\) and column \(j\) to \(\alpha\)
2) Set \(A(j, i)\) to \(\alpha\)
3) Reduce the resultant matrix except for grows and colvemns containing only \(\alpha\).
- Solve the following Travelling Salesperson using Branch and Board.
\[
\left.\begin{array}{ccccc}
A & B & C & D & E \\
A \\
B \\
C \\
D & 20 & 30 & 10 & 11 \\
15 & \alpha & 16 & 4 & 2 \\
3 & 5 & \alpha & 2 & 4 \\
19 & 6 & 18 & \alpha & 3 \\
16 & 4 & 7 & 16 & \alpha
\end{array}\right]
\]
we have to reduce the row values by using minimum values.
\[
\left[\begin{array}{ccccc}
\alpha & 20 & 30 & 10 & 11 \\
15 & \alpha & 16 & 4 & 2 \\
3 & 5 & \alpha & 2 & 4 \\
19 & 6 & 18 & \alpha & 3 \\
16 & 4 & 7 & 16 & \alpha
\end{array}\right]_{4}^{0} 2 \rightarrow\left[\begin{array}{ccccc}
\alpha & 10 & 20 & 0 & 1 \\
13 & \alpha & 14 & 2 & 0 \\
1 & 3 & \infty & 0 & 2 \\
16 & 3 & 15 & \alpha & 0 \\
12 & 0 & 3 & 12 & \alpha
\end{array}\right]
\]

We have to reduce the column values by using minimum values.
\[
\left[\begin{array}{ccccc}
\alpha & 10 & 20 & 0 & 1 \\
13 & \alpha & 14 & 2 & 0 \\
1 & 3 & \alpha & 0 & 2 \\
16 & 13 & 15 & \alpha & 0 \\
12 & 0 & 3 & 12 & \alpha
\end{array}\right] \rightarrow\left[\begin{array}{ccccc}
\alpha & 10 & 17 & 0 & 1 \\
12 & \alpha & 11 & 2 & 0 \\
0 & 3 & \alpha & 0 & 2 \\
15 & 0 & 3 & 0 & 0
\end{array}\right]
\]

Total reduced cost
\[
\begin{aligned}
& =10+2+2+3+4+1+3 \\
& =25 .
\end{aligned}
\]
- Now coot of edge \(\langle 1,2\rangle\).
1. Set row \& col 2 to \(\alpha\).
\(2 \cdot \operatorname{set}(2,1)\) to \(\alpha\).

\[
\left[\begin{array}{ccccc}
\alpha & \alpha & \alpha & \alpha & \alpha \\
\alpha & \alpha & 11 & 2 & 0 \\
0 & \alpha & \alpha & 0 & 2 \\
15 & \alpha & 12 & \alpha & 0 \\
11 & \alpha & 0 & 12 & \alpha \\
0 & 0 & 0 & 0 & 0
\end{array}\right]-0
\]
reduced cost \(=0\)
\[
\text { Cont of } \begin{aligned}
1-2 & =\text { optimal cost }+ \text { Reduced cost }+M[1][2] \\
& =25+0+10 \\
& =35 .
\end{aligned}
\]

Cont of edge \(\langle 1,3\rangle\)
set now \& col 3 to \(\alpha\). set \(\langle 3,1\rangle=\alpha\).
\[
\left[\begin{array}{ccccc}
\alpha & \alpha & \alpha & \alpha & \alpha \\
12 & \alpha & \alpha & 2 & 0 \\
\alpha & 3 & \alpha & 0 & 2 \\
15 & 13 & \alpha & \alpha & 0 \\
11 & 0 & \alpha & 12 & \alpha
\end{array}\right]-0-0.0\left[\begin{array}{ccccc}
\alpha & \alpha & \alpha & \alpha & \alpha \\
1 & \alpha & \alpha & 2 & 0 \\
1 & 0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{ccc}
0 & 3 & \alpha \\
4 & 0 & 2 \\
0 & 0 & \alpha \\
12 & \alpha & \alpha \\
0
\end{array}\right]
\]
neduced
\[
\begin{aligned}
\cos t & =0+11 \\
& =11
\end{aligned}
\]
\[
\begin{aligned}
\text { Coot of }\langle 1-3\rangle & =\text { optimal cont }+ \text { medceced cont }+M[1][3] \\
& =25+11+17 \\
& =53 .
\end{aligned}
\]
cont of edge \(\langle 1,4\rangle\).
set raoul af col 4 to \(\alpha\), set \(r[4][1]=\alpha\).
\[
\left[\begin{array}{ccccc}
\alpha & \alpha & \alpha & \alpha & \alpha \\
12 & \alpha & 11 & \alpha & 0 \\
0 & 3 & \alpha & \alpha & 2 \\
\alpha & 3 & 12 & \alpha & 0 \\
11 & 0 & 0 & \alpha & \alpha
\end{array}\right]\left[\begin{array}{llll}
0 \\
0 \\
0 & 0 & 0 & 0 \\
0 & 0 & \alpha & \alpha \\
12 & \alpha & 11 & \alpha \\
0 & 3 & \alpha & \alpha \\
0 \\
\infty & 3 & 12 & \alpha \\
0 \\
11 & 0 & 0 & \alpha \\
\alpha
\end{array}\right]
\]

Reduced cost \(=0\).
\[
\begin{aligned}
\text { Cont of }\langle 1,4\rangle & =\text { optimal cost } t \text { Reduce Cost }+M[T][4] \\
& =25+0+0 \\
& =25
\end{aligned}
\]

Coot of edge \(\langle 1,5\rangle\)
Set trow 1 and \(\operatorname{col} 5\) to \(\alpha\), set \(M[5][1]=\alpha\).
\[
\left[\begin{array}{ccccc}
\alpha & \alpha & \alpha & \alpha & \alpha \\
12 & \alpha & 11 & 2 & \alpha \\
0 & 3 & \alpha & 0 & \alpha \\
15 & 3 & 12 & \alpha & \alpha \\
\alpha & 0 & 0 & 12 & \alpha \\
\alpha & 0 & 0 & 0 & 0 \\
0 \\
0 \\
0 & \alpha & 9 & 0 & \alpha \\
0 & 3 & \alpha & 0 & \alpha \\
12 & 0 & 9 & \alpha & \alpha \\
\alpha & 0 & 0 & 12 & \infty \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
\]

Reduced cont \(=2+3=5\).
\[
\begin{aligned}
\text { Cost of } 21,5\rangle & =\text { optimal cost }+ \text { Reduced Cost }+\pi[1][5] \\
& =25+5+1 \\
& =31
\end{aligned}
\]

Among all the paths, path \(\langle 1,4\rangle\) is least cost.
The next chances are \(1,4,2 ; 1,4,3,1,4,5\).
cont of path \(1,4,2\). with edges
\[
\langle 1,4\rangle\langle 4 ; 2\rangle .
\]

\[
\left[\begin{array}{lllll}
\alpha & \alpha & \alpha & \alpha & \alpha \\
\alpha & \alpha & 11 & \alpha & 0 \\
0 & \alpha & \alpha & \alpha & 2 \\
\alpha & \alpha & \alpha & \alpha & \alpha \\
11 & \alpha & 0 & \alpha & \alpha
\end{array}\right] \begin{aligned}
& 0 \\
& 0 \\
& 0
\end{aligned} 00
\]

Reduced cost \(=0\).
cost of \((1-4)-2\) is
optimal cast + Reduced cast \(+M[4,2]\).
\[
\begin{aligned}
& =25+0+3 \\
& =28 .
\end{aligned}
\]
cont of path 1,4,3. with edge \(\langle 1, n\rangle\langle 43\rangle\). Set sown 1,4 bound col 4,3 to \(\alpha \cdot M[4,4] \times M\left[\begin{array}{ll}4 \\ H\end{array}\right]=\alpha\).
\[
\begin{aligned}
& {\left[\begin{array}{lllll}
\alpha & \alpha & \alpha & \alpha & \alpha \\
12 & \alpha & \alpha & \alpha & 0 \\
\alpha & 3 & \alpha & \alpha & 2 \\
\alpha & \alpha & \alpha & \alpha & \alpha \\
11 & 0 & \alpha & \alpha & \alpha
\end{array}\right]\left[\begin{array}{lll}
0 \\
0 \\
0 \\
0
\end{array} \rightarrow\left[\begin{array}{llll}
\alpha & \alpha & \alpha & \alpha \\
12 & \alpha & \alpha & \alpha \\
1 & 0 \\
\alpha & 1 & \alpha & \alpha \\
\alpha & \alpha & \alpha & \alpha \\
11 & 0 & \alpha & \alpha \\
11 & 0 & 0 & 0 \\
1
\end{array}\right]\right.} \\
& \rightarrow\left[\begin{array}{lllll}
\alpha & \alpha & \alpha & \alpha & \alpha \\
1 & \alpha & \alpha & \alpha & 0 \\
\alpha & 1 & \alpha & \alpha & 0 \\
\alpha & \alpha & \alpha & \alpha & \alpha \\
0 & 0 & \alpha & \alpha & \alpha
\end{array}\right]
\end{aligned}
\]
\[
\text { Reduced cost }=2+11=13 \text {. }
\]
cont of \((1-k)-3=\) optimal cont + Reduced cost \(r M[r, 3]\).
\[
\begin{aligned}
& =25+13+12 \\
& =50
\end{aligned}
\]

Cont of path \((1-k)-5\) with edge \(\langle 1, u\rangle\) and \(\langle 1,5\rangle\) Set now 1,4 and col. 4,5 to \(b\). \(\operatorname{Set} M[4,1], M[5,4]\) dod.
\[
\left[\begin{array}{lllll}
\alpha & \alpha & \alpha & \alpha & \alpha \\
12 & \alpha & 11 & \alpha & \alpha \\
0 & 3 & \alpha & \alpha & \alpha \\
\alpha & \alpha & \alpha & \alpha & \alpha \\
\infty & 0 & 0 & \alpha & \alpha
\end{array}\right] \begin{aligned}
& 0 \\
& 11 \\
& 0 \\
& 0 \\
& 0
\end{aligned} \rightarrow\left[\begin{array}{ccccc}
\alpha & \alpha & \alpha & \alpha & \alpha \\
1 & \alpha & 0 & \alpha & \alpha \\
0 & 3 & \alpha & \alpha & \alpha \\
\alpha & \alpha & \alpha & \alpha & \alpha \\
\alpha & 0 & 0 & \alpha & \alpha \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
\]

Reduced cont \(=11\)
\(\operatorname{cost}(1-k)-5\) is optimal cost + Reduced cont \(+14[4,5]\)
\[
\begin{aligned}
& =25+11+0 \\
& =36
\end{aligned}
\]

Among all the paths \((1-x)-2\) is minimcem. The next chance io \((1-k-2)-3\). \(\langle 1,4\rangle\langle k, 2\rangle\langle 4,3\rangle\) set rows \(1,4,2\) and col, \(4,2,3\) to \(\alpha\). set \(M[4,1], M[2,1], M[3,1], \alpha\)
\[
\left[\begin{array}{lllll}
\alpha & \alpha & \alpha & \alpha & \alpha \\
\alpha & \alpha & \alpha & \alpha & \alpha \\
\alpha & \alpha & \alpha & \alpha & 2 \\
\omega & \alpha & \alpha & \alpha & \alpha \\
11 & \alpha & \alpha & \alpha & \alpha
\end{array}\right] \begin{aligned}
& 0 \\
& 0 \\
& 0
\end{aligned} \rightarrow\left[\begin{array}{lllll}
\alpha & \alpha & \alpha & \alpha & \alpha \\
\alpha & \alpha & \alpha & \alpha & \alpha \\
\alpha & \alpha & \alpha & \alpha & 0 \\
\alpha & \alpha & \alpha & \alpha & \alpha \\
0 & \alpha & \alpha & \alpha & \alpha \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
\]
cost of \((1-k-2)-3\) is
optimal cont e Reduced cost e \(M[9,3]\)
\[
=25+13+11
\]
\[
=\$
\]

The next charmed is \((1-x-2)-5\)
set rows \(1,4,2\) and colverns \(4,2,5\) to \(\alpha\). Set \(M[4,1], M[2,1], M[5,1]\) to \(\alpha\).
\[
\left[\begin{array}{lllll}
\alpha & \alpha & \alpha & \alpha & \alpha \\
\alpha & \alpha & \alpha & \alpha & \alpha \\
0 & \alpha & \alpha & \alpha & \alpha \\
\alpha & \alpha & \alpha & \alpha & \alpha \\
\alpha & \alpha & 0 & \alpha & \alpha \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\]

Reduced cost \(=0\).
\[
\begin{aligned}
\operatorname{Cost}(1-k-2)-5 & =0 p t i m a l \text { coot }+ \text { Reduced cont }+M[2,5] \\
& =25+0+0 \\
& =25
\end{aligned}
\]

\section*{UNIT V}

NP-Hard and NP-Complete problems: Basic concepts, non deterministic algorithms, NP - Hard and NP Complete classes, Cook's theorem.

\section*{Basic concepts:}

NP Nondeterministic Polynomial time
The problems has best algorithms for their solutions have "Computing times", that cluster into two groups
\begin{tabular}{|c|c|}
\hline Group 1 & Group 2 \\
\hline \begin{tabular}{l}
Problems with solution time bound by a polynomial of a small degree. \\
It also called "Tractable Algorithms" \\
Most Searching \& Sorting algorithms are polynomial time algorithms \\
Ex: \\
Ordered Search \((\mathbf{O}(\log \mathbf{n}))\), \\
Polynomial evaluation \(\mathbf{O}(\mathbf{n})\) \\
Sorting \(\mathbf{O}(\mathbf{n} \cdot \log \mathbf{n})\)
\end{tabular} & \begin{tabular}{l}
Problems with solution times not bound by polynomial (simply non polynomial) \\
\(>\) These are hard or intractable problems \\
None of the problems in this group has been solved by any polynomial time algorithm \\
\(>\) Ex: \\
Traveling Sales Person O(\(\mathbf{n}^{2} \mathbf{2}^{\text {n }}\)) \\
Knapsack \(\mathbf{O}\left(\mathbf{2}^{\mathrm{n} / 2}\right)\)
\end{tabular} \\
\hline
\end{tabular}

No one has been able to develop a polynomial time algorithm for any problem in the 2 nd group (i.e., group 2)

So, it is compulsory and finding algorithms whose computing times are greater than polynomial very quickly because such vast amounts of time to execute that even moderate size problems cannot be solved.

\section*{Theory of NP-Completeness:}

Show that may of the problems with no polynomial time algorithms are computational time algorithms are computationally related.

There are two classes of non-polynomial time problems
1. NP-Hard
2. NP-Complete

NP Complete Problem: A problem that is NP-Complete can solved in polynomial time if and only if (iff) all other NP-Complete problems can also be solved in polynomial time.

NP-Hard: Problem can be solved in polynomial time then all NP-Complete problems can be solved in polynomial time.

All NP-Complete problems are NP-Hard but some NP-Hard problems are not know to be NPComplete.

\section*{Nondeterministic Algorithms:}

Algorithms with the property that the result of every operation is uniquely defined are termed as deterministic algorithms. Such algorithms agree with the way programs are executed on a computer.

Algorithms which contain operations whose outcomes are not uniquely defined but are limited to specified set of possibilities. Such algorithms are called nondeterministic algorithms.

The machine executing such operations is allowed to choose any one of these outcomes subject to a termination condition to be defined later.

To specify nondeterministic algorithms, there are 3 new functions.
Choice(S) arbitrarily chooses one of the elements of sets S
Failure () Signals an Unsuccessful completion

Success () Signals a successful completion.

\section*{Example for Non Deterministic algorithms:}
\begin{tabular}{|c|c|}
\hline Algorithm Search(x)\{ & Whenever there is a set of choices that \\
\hline //Problem is to search an element x & leads to a successful completion then \\
\hline //output J , such that \(\mathrm{A}[\mathrm{J}]=\mathrm{x}\); or \(\mathrm{J}=0\) if x is not in A & one such set of choices is always made \\
\hline \(\mathrm{J}:=\) Choice (1,n); & \\
\hline if(A[J]:=x) then \{ & A Nondeterministic algorithm \\
\hline Write(J); Success(); & (iff) there exists no set of choices \\
\hline \} & leading to a successfulsignal. \\
\hline else\{ & \\
\hline write(0); & \\
\hline failure(); & \\
\hline & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Nondeterministic Knapsack algorithm & \\
\hline ```
Algorithm DKP(p, w, n, m, r, x) \{
\(\mathrm{W}:=0\);
\(\mathrm{P}:=0\);
for \(\mathrm{i}:=1\) to n do \(\{\)
\(\mathrm{x}[\mathrm{i}]:=\) choice \((0,1)\);
\(\mathrm{W}:=\mathrm{W}+\mathrm{x}[\mathrm{i}] * \mathrm{w}[\mathrm{i}]\);
\(\mathrm{P}:=\mathrm{P}+\mathrm{x}[\mathrm{i}] * \mathrm{p}[\mathrm{i}]\);
\}
if \((\mathrm{W}>\mathrm{m})\) or \((\mathrm{P}<\mathrm{r})\)) then Failure () ;
else Success();
\}
``` & ```
p given Profits
w. given Weights
n Number of elements (nu mber of
p or w)
m. Weight of bag limit
P. Final Profit
W Final weight
``` \\
\hline
\end{tabular}

\section*{The Classes NP-Hard \& NP-Complete:}

For measuring the complexity of an algorithm, we use the input length as the parameter. For example, An algorithm \(A\) is of polynomial complexity \(p()\) such that the computing time of \(A\) is \(O(p(n))\) for every input of size \(n\).
Decision problem/ Decision algorithm: Any problem for which the answer is either zero or one is decision problem. Any algorithm for a decision problem is termed a decision algorithm.
Optimization problem/ Optimization algorithm: Any problem that involves the identification of an optimal (either minimum or maximum) value of a given cost function is known as an optimization problem. An optimization algorithm is used to solve an optimization problem.
\(\mathbf{P}\) is the set of all decision problems solvable by deterministic algorithms in polynomial time. \(\mathbf{N P}\), is the set of all decision problems solvable by nondeterministic algorithms in polynomial time.

Since deterministic algorithms are just a special case of nondeterministic, by this we concluded that \(\mathbf{P} \mathbf{N P}\)

Commonly believed relationship between P \& NP

The most famous unsolvable problems in Computer Science is Whether \(\mathrm{P}=\mathrm{NP}\) or \(\mathrm{P} \neq \mathrm{NP}\) In considering this problem, s.cook formulated the following question.

If there any single problem in NP, such that if we showed it to be in ' \(P\) ' then that would imply that \(\mathrm{P}=\mathrm{NP}\).

Cook answered this question with
Theorem: Satisfiability is in P if and only if (iff) \(\mathrm{P}=\mathrm{NP}\)
-) Notation of Reducibility
Let \(L_{1}\) and \(L_{2}\) be problems, Problem \(L_{1}\) reduces to \(L_{2}\left(\right.\) written \(\left.\mathbf{L}_{1} \boldsymbol{\alpha} \mathbf{L}_{2}\right)\) iff there is a way to solve \(\mathrm{L}_{1}\) by a deterministic polynomial time algorithm using a deterministic algorithm that solves \(\mathrm{L}_{2}\) in polynomial time

This implies that, if we have a polynomial time algorithm for \(\mathrm{L}_{2}\), Then we can solve \(\mathrm{L}_{1}\) in polynomial time.

Here \(\alpha^{-}\)) is a transitive relation i.e., \(L_{1} \alpha L_{2}\) and \(L_{2} \alpha L_{3}\) then \(\mathbf{L}_{1} \alpha L_{3}\)
A problem L is NP-Hard if and only if (iff) satisfiability reduces to Lie., Statisfiability \(\boldsymbol{\alpha} \mathbf{L}\)
A problem L is NP-Complete if and only if (iff) L is NP-Hard and L \(\mathbf{C}\) NP

Commonly believed relationship among P, NP, NP-Complete and NP-Hard

Mostnatural problems in NP are either in P or NP-complete.

\section*{Examples of NP-complete problems:}

Packing problems: SET-PACKING, INDEPENDENT-SET.
Covering problems: SET-COVER, VERTEX-COVER.
Sequencing problems: HAMILTONIAN-CYCLE, TSP.
Partitioning problems: 3-COLOR, CLIQUE.
Constraint satisfaction problems: SAT, 3-SAT.
Numerical problems: SUBSET-SUM, PARTITION, KNAPSACK.

Cook's Theorem: States that satisfiability is in P if and only if \(\mathrm{P}=\mathrm{NP}\) If \(\mathrm{P}=\mathrm{NP}\) then satisfiability is in P

If satisfiability is in P , then \(\mathrm{P}=\mathrm{NP}\)
To do this
\(>\mathrm{A}^{-}\)) Any polynomial time nondeterministic decision algorithm.
\(\mathrm{I}^{-}\)) Input of that algorithm
Then formula \(Q(A, I)\), Such that \(Q\) is satisfiable iff ' \(\mathbf{A}\) ' has a successful termination with Input I.
\(>\) If the length of ' \(\mathbf{I}\) ' is ' \(\mathbf{n}\) ' and the time complexity of \(\mathbf{A}\) is \(\mathbf{p}(\mathbf{n})\) for some polynomial \(\mathbf{p}()\) then length of \(Q\) is \(\mathbf{O}\left(\mathbf{p}^{3}(\mathbf{n}) \log \mathbf{n}\right)=\mathbf{O}\left(\mathbf{p}^{4}(\mathbf{n})\right)\)

The time needed to construct Q is also \(\mathbf{O}\left(\mathbf{p}^{3}(\mathbf{n}) \log \mathbf{n}\right)\).
\(>\) A deterministic algorithm ' \(\mathbf{Z}\) ' to determine the outcome of ' \(\mathbf{A}\) ' on any input ' \(\mathbf{I}\) ' Algorithm \(\mathbf{Z}\) computes ' \(\mathbf{Q}\) ' and then uses a deterministic algorithm for the satisfiability problem to determine whether ' \(\mathbf{Q}\) ' is satisfiable.If \(\mathbf{O}(\mathbf{q}(\mathbf{m})\)) is the time needed to determine whether a formula of length ' \(m^{\prime}\) ' issatisfiable then the complexity of ' \(\mathbf{Z}\) ' is \(\mathbf{O}\left(\mathbf{p}^{3}(\mathbf{n}) \log \mathbf{n}+\mathbf{q}\left(\mathbf{p}^{3}(\mathbf{n}) \log \mathbf{n}\right)\right)\).
\(>\) If satisfiability is ' \(\mathbf{p}\) ', then ' \(\mathbf{q (m)}\) ' is a polynomial function of ' \(\mathbf{m}\) ' and thecomplexity of ' \(\mathbf{Z}\) ' becomes ' \(\mathbf{O}\left(\mathbf{r}(\mathbf{n})\right.\))' for some polynomial ' \(\mathbf{r}()^{\prime}\) '.
\(>\) Hence, if satisfiability is in \(\mathbf{p}\), then for every nondeterministic algorithm \(\mathbf{A}\) in \(\mathbf{N P}\), we canobtain a deterministic \(\mathbf{Z}\) in \(\mathbf{p}\).

By this we shows that satisfiability is in \(\mathbf{p}\) then \(\mathbf{P}=\mathbf{N} \mathbf{P}\)

\section*{String Matching Introduction}

String Matching Algorithm is also called "String Searching Algorithm." This is a vital class of string algorithm is declared as "this is the method to find a place where one is several strings are found within the larger string."

Given a text array, \(\mathrm{T}[1 \ldots . \mathrm{n}]\), of n character and a pattern array, \(\mathrm{P}[1 \ldots . . \mathrm{m}]\), of m characters. The problems are to find an integer s , called valid shift where \(0 \leq \mathrm{s}<\mathrm{n}-\mathrm{m}\) and \(\mathrm{T}[\mathrm{s}+1 \ldots . . \mathrm{s}+\mathrm{m}]=\mathrm{P}[1 \ldots . . \mathrm{m}]\). In other words, to find even if P in T , i.e., where P is a substring of T . The item of P and T are character drawn from some finite alphabet such as \(\{0,1\}\) or \(\{A, B \ldots . . Z, a, b \mathrm{z}\}\).

Given a string \(T[1 \ldots . . . n]\), the substrings are represented as \(T[i \ldots \ldots . . j\) for some \(0 \leq i \leq j \leq n-1\), the string formed by the characters in T from index i to index j , inclusive. This process that a string is a substring of itself (take \(\mathrm{i}=0\) and j \(=\mathrm{m}\)).

The proper substring of string \(T[1 \ldots . . . n]\) is \(T[1 \ldots . . . j]\) for some \(0<i \leq j \leq n-1\). That is, we must have either \(\mathrm{i}>0\) or \(\mathrm{j}<\) m-1.

Using these descriptions, we can say given any string T [1......n], the substrings are
1.
\[
T[i \ldots . . . j]=T[i] T[i+1] T[i+2] \ldots T[j] \text { for some } 0 \leq i \leq j \leq n-1 .
\]

And proper substrings are
1.
\(T[i j]=T[i] T[i+1] T[i+2] \ldots . . . T[j]\) for some \(0 \leq i \leq j \leq n-1\).
Note: If \(\mathrm{i}>\mathrm{j}\), then \(\mathrm{T}[\mathrm{i} \ldots . . \mathrm{j}]\) is equal to the empty string or null, which has length zero.

\section*{Algorithms used for String Matching:}

There are different types of method is used to finding the string
1. The Naive String Matching Algorithm
2. The Rabin-Karp-Algorithm
3. Finite Automata
4. The Knuth-Morris-Pratt Algorithm
5. The Boyer-Moore Algorithm

\section*{The Naive String Matching Algorithm}

The naïve approach tests all the possible placement of Pattern \(\mathrm{P}[1 \ldots . . . \mathrm{m}]\) relative to text \(\mathrm{T}[1 \ldots . . \mathrm{n}]\). We try shift \(\mathrm{s}=\) \(0,1 \ldots . . . \mathrm{n}-\mathrm{m}\), successively and for each shift s. Compare \(\mathrm{T}[\mathrm{s}+1 \ldots . . . \mathrm{s}+\mathrm{m}]\) to \(\mathrm{P}[1 \ldots . . \mathrm{m}]\).

The naïve algorithm finds all valid shifts using a loop that checks the condition \(\mathrm{P}[1 \ldots \ldots . \mathrm{m}]=\mathrm{T}[\mathrm{s}+1 \ldots . . . \mathrm{s}+\mathrm{m}]\) for each of the \(n-m+1\) possible value of \(s\).

\section*{NAIVE-STRING-MATCHER (T, P)}
1. \(\mathrm{n} \leftarrow\) length [T\(]\)
2. \(\mathrm{m} \leftarrow\) length \([\mathrm{P}]\)
3. for \(\mathrm{s} \leftarrow 0\) to \(\mathrm{n}-\mathrm{m}\)
4. do if \(\mathrm{P}[1 \ldots . . \mathrm{m}]=\mathrm{T}[\mathrm{s}+1 \ldots . \mathrm{s}+\mathrm{m}]\)
5. then print "Pattern occurs with shift" s

Analysis: This for loop from 3 to 5 executes for \(n-m+1\) (we need at least \(m\) characters at the end) times and in iteration we are doing \(m\) comparisons. So the total complexity is \(\mathrm{O}(\mathrm{n}-\mathrm{m}+1)\).

\section*{Example:}
1. \(\quad\) Suppose \(T=1011101110\)
\[
\mathrm{P}=111
\]
3.

Find all the Valid Shift

Solution:

So, \(S=2\) is a Valid Shift

\section*{So, \(\mathrm{S}=6\) is a Valid Shift}

\section*{The Rabin-Karp-Algorithm}

The Rabin-Karp string matching algorithm calculates a hash value for the pattern, as well as for each M-character subsequences of text to be compared. If the hash values are unequal, the algorithm will determine the hash value for next M-character sequence. If the hash values are equal, the algorithm will analyze the pattern and the M-character sequence. In this way, there is only one comparison per text subsequence, and character matching is only required when the hash values match.

\section*{RABIN-KARP-MATCHER (T, P, d, q)}
1. \(\mathrm{n} \leftarrow\) length \([\mathrm{T}]\)
2. \(\mathrm{m} \leftarrow\) length \([\mathrm{P}]\)
3. \(\mathrm{h} \leftarrow \mathrm{d}^{\mathrm{m}-1} \bmod \mathrm{q}\)
4. \(\mathrm{p} \leftarrow 0\)
5. \(\mathrm{t}_{0} \leftarrow 0\)
6. for \(\mathrm{i} \leftarrow 1\) to m
7. do \(\mathrm{p} \leftarrow(\mathrm{dp}+\mathrm{P}[\mathrm{i}]) \bmod \mathrm{q}\)
8. \(\mathrm{t}_{0} \leftarrow\left(\mathrm{dt}_{0}+\mathrm{T}[\mathrm{i}]\right) \bmod \mathrm{q}\)
9. for \(\mathrm{s} \leftarrow 0\) to \(\mathrm{n}-\mathrm{m}\)
10. do if \(\mathrm{p}=\mathrm{t}_{\mathrm{s}}\)
11. then if \(\mathrm{P}[1 \ldots . . \mathrm{m}]=\mathrm{T}[\mathrm{s}+1 \ldots . . \mathrm{s}+\mathrm{m}]\)
12. then "Pattern occurs with shift" s
13. If \(\mathrm{s}<\mathrm{n}-\mathrm{m}\)
14. then \(\mathrm{t}_{\mathrm{s}+1} \leftarrow\left(\mathrm{~d}\left(\mathrm{t}_{\mathrm{s}}-\mathrm{T}[\mathrm{s}+1] \mathrm{h}\right)+\mathrm{T}[\mathrm{s}+\mathrm{m}+1]\right) \bmod \mathrm{q}\)

Example: For string matching, working module \(q=11\), how many spurious hits does the Rabin-Karp matcher encounters in Text T = 31415926535.......
1.
\(\mathrm{T}=31415926535 \ldots . .\).
\(\mathrm{P}=26\)
Here T.Length \(=11\) so \(\mathrm{Q}=11\)
4. \(\quad\) And \(\mathrm{P} \bmod \mathrm{Q}=26 \bmod 11=4\)
5. \(\quad\) Now find the exact match of \(\mathrm{P} \bmod \mathrm{Q} \ldots\)

Solution:

\section*{\(31 \bmod 11=9\) not equal to 4}

\(14 \bmod 11=3\) not equal to 4

\(41 \bmod 11=8\) not equal to 4
\(\square\)
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|}
\hline 3 & 1 & 4 & 1 & 5 & 9 & 2 & 6 & 5 & 3 \\
\hline
\end{tabular}
\(15 \bmod 11=4\) equal to 4 SPURIOUS HIT

\(92 \bmod 11=4\) equal to 4 SPURIOUS HIT
\begin{tabular}{|c|c|c|c|c|c|}
\hline \(\mathrm{S}=6\) \\
\hline 3 & 1 & 4 & 1 & 5 & 9 \\
\hline
\end{tabular}
26 mod \(11=4\) EXACT MATCH

\(S=7\)
\begin{tabular}{l|l|l|l|l|l|l|l|l|l|l}
\hline 3 & 1 & 4 & 1 & 5 & 9 & 2 & 6 & 5 & 3 & \\
\hline
\end{tabular}

\section*{\(65 \bmod 11=10\) not equal to 4}

\section*{\(53 \bmod 11=9\) not equal to 4}

\begin{tabular}{l|l|l|l|l|l}
\(\begin{array}{lll}3 & 1 & 4\end{array}\) & 1 & 5 & 9 \\
& \\
& & \(35 \bmod 11=2\) & not equal to 4
\end{tabular}

\section*{The Pattern occurs with shift 6.}

\section*{Complexity:}

The running time of RABIN-KARP-MATCHER in the worst case scenario \(\mathbf{O}((\mathbf{n}-\mathbf{m}+\mathbf{1}) \mathbf{m}\) but it has a good average case running time. If the expected number of strong shifts is small \(\mathbf{O}(\mathbf{1})\) and prime \(q\) is chosen to be quite large, then the Rabin-Karp algorithm can be expected to run in time \(\mathbf{O}(\mathbf{n}+\mathbf{m})\) plus the time to require to process spurious hits.

\section*{The Knuth-Morris-Pratt (KMP)Algorithm}

Knuth-Morris and Pratt introduce a linear time algorithm for the string matching problem. A matching time of O (n) is achieved by avoiding comparison with an element of 'S' that have previously been involved in comparison with some element of the pattern 'p' to be matched. i.e., backtracking on the string 'S' never occurs

\section*{Components of KMP Algorithm:}
1. The Prefix Function (П): The Prefix Function, \(\Pi\) for a pattern encapsulates knowledge about how the pattern matches against the shift of itself. This information can be used to avoid a useless shift of the pattern 'p.' In other words, this enables avoiding backtracking of the string 'S.'
2. The KMP Matcher: With string 'S,' pattern ' p ' and prefix function ' \(\Pi\) ' as inputs, find the occurrence of ' p ' in ' \(S\) ' and returns the number of shifts of ' p ' after which occurrences are found.

\section*{The Prefix Function (П)}

Following pseudo code compute the prefix function, \(\Pi\) :

\section*{COMPUTE- PREFIX- FUNCTION (P)}
1. \(\mathrm{m} \leftarrow\) length \([\mathrm{P}]\)
//'p' pattern to be matched
2. \(\Pi[1] \leftarrow 0\)
3. \(\mathrm{k} \leftarrow 0\)
4. for \(\mathrm{q} \leftarrow 2\) to m
5. do while \(\mathrm{k}>0\) and \(\mathrm{P}[\mathrm{k}+1] \neq \mathrm{P}[\mathrm{q}]\)
6. do \(\mathrm{k} \leftarrow \Pi[\mathrm{k}]\)
7. If \(\mathrm{P}[\mathrm{k}+1]=\mathrm{P}[\mathrm{q}]\)
8. then \(\mathrm{k} \leftarrow \mathrm{k}+1\)
9. \(\Pi[\mathrm{q}] \leftarrow \mathrm{k}\)
10. Return \(\Pi\)

\section*{Running Time Analysis:}

In the above pseudo code for calculating the prefix function, the for loop from step 4 to step 10 runs ' m ' times. Step1 to Step3 take constant time. Hence the running time of computing prefix function is \(\mathrm{O}(\mathrm{m})\).

Example: Compute \(\Pi\) for the pattern ' p ' below:

P:

\section*{Solution:}
\[
\begin{gathered}
\text { Initially: } \mathrm{m}=\text { length }[\mathrm{p}]=7 \\
\\
\Pi[1]=0 \\
\mathrm{k}=0
\end{gathered}
\]

Step 1: \(q=2, k=0\)
\[
\Pi[2]=0
\]
\begin{tabular}{|l|l|l|l|l|l|l|l}
\hline q & \(\mathbf{1}\) & 2 & 3 & 4 & 5 & 6 & \\
\hline p & a & b & a & b & a & c & \\
\hline II & 0 & 0 & & & & & \\
\hline
\end{tabular}

Step 2: \(q=3, k=0\)
\[
П[3]=1
\]
\begin{tabular}{|l|l|l|l|l|l|l|l}
\hline q & \(\mathbf{1}\) & \(\mathbf{2}\) & 3 & 4 & 5 & 6 & \\
\hline p & a & b & a & b & a & c & \\
\hline\(\pi\) & 0 & 0 & 1 & & & & \\
\hline
\end{tabular}

Step3: \(q=4, k=1\)
\[
П[4]=2
\]
\begin{tabular}{|l|l|l|l|l|l|l|l}
\hline q & \(\mathbf{1}\) & 2 & 3 & 4 & 5 & 6 & \\
\hline p & a & b & a & b & a & c & \\
\hline II & 0 & 0 & 1 & 2 & & & \\
\hline
\end{tabular}

Step4: \(q=5, k=2\)
\(\square[5]=3\)
\begin{tabular}{|l|l|l|l|l|l|l|l}
\hline q & 1 & 2 & 3 & 4 & 5 & 6 & \\
\hline\(p\) & a & b & a & b & a & c & \\
\hline \(\boldsymbol{\Pi}\) & 0 & 0 & 1 & 2 & 3 & & \\
\hline
\end{tabular}

Step5: q = 6, k = 3
\[
\Pi[6]=0
\]
\begin{tabular}{|l|l|l|l|l|l|l|l}
\hline\(q\) & 1 & 2 & 3 & 4 & 5 & 6 & \\
\hline\(p\) & \(a\) & \(b\) & \(a\) & \(b\) & \(a\) & \(c\) & \\
\hline\(\Pi\) & 0 & 0 & 1 & 2 & 3 & 0 & \\
\hline
\end{tabular}

Step6: \(q=7, k=1\)
\(\square[7]=1\)
\begin{tabular}{|l|l|l|l|l|l|l|l}
\hline q & \(\mathbf{1}\) & \(\mathbf{2}\) & \(\mathbf{3}\) & \(\mathbf{4}\) & 5 & 6 & \\
\hline p & a & b & a & b & a & c & \\
\hline \(\boldsymbol{\Pi}\) & 0 & 0 & 1 & 2 & 3 & 0 & \\
\hline
\end{tabular}

After iteration 6 times, the prefix function computation is complete:
\begin{tabular}{|l|l|l|l|l|l|l|l}
\hline q & 1 & 2 & 3 & 4 & 5 & 6 & \\
\hline p & a & b & A & b & a & c & \\
\hline \(\boldsymbol{\Pi}\) & 0 & 0 & 1 & 2 & 3 & 0 & \\
\hline
\end{tabular}

\section*{The KMP Matcher:}

The KMP Matcher with the pattern ' p ,' the string ' S ' and prefix function ' \(\Pi\) ' as input, finds a match of p in S . Following pseudo code compute the matching component of KMP algorithm:

KMP-MATCHER (T, P)
1. \(\mathrm{n} \leftarrow\) length \([\mathrm{T}]\)
2. \(\mathrm{m} \leftarrow\) length \([\mathrm{P}]\)
3. \(\Pi \leftarrow\) COMPUTE-PREFIX-FUNCTION (P)
4. \(\mathrm{q} \leftarrow 0 \quad / /\) numbers of characters matched
5. for \(\mathrm{i} \leftarrow 1\) to \(\mathrm{n} \quad / /\) scan S from left to right
6. do while \(\mathrm{q}>0\) and \(\mathrm{P}[\mathrm{q}+1] \neq \mathrm{T}[\mathrm{i}]\)
7. do \(\mathrm{q} \leftarrow \Pi[\mathrm{q}] \quad / /\) next character does not match
8. If \(\mathrm{P}[\mathrm{q}+1]=\mathrm{T}[\mathrm{i}]\)
9. then \(\mathrm{q} \leftarrow \mathrm{q}+1 \quad / /\) next character matches
10. If \(\mathrm{q}=\mathrm{m} \quad / /\) is all of p matched?
11. then print "Pattern occurs with shift" i-m
12. \(\mathrm{q} \leftarrow \Pi[\mathrm{q}]\)
// look for the next match

\section*{Running Time Analysis:}

The for loop beginning in step 5 runs ' \(n\) ' times, i.e., as long as the length of the string 'S.' Since step 1 to step 4 take constant times, the running time is dominated by this for the loop. Thus running time of the matching function is O (n).

Example: Given a string 'T' and pattern 'P' as follows:
T: \begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline \(\mathbf{b}\) & \(\mathbf{a}\) & \(\mathbf{c}\) & \(\mathbf{b}\) & \(\mathbf{a}\) & \(\mathbf{b}\) & \(\mathbf{a}\) & \(\mathbf{b}\) & \(\mathbf{a}\) & \(\mathbf{b}\) & \(\mathbf{a}\) & \(\mathbf{c}\) & \(\mathbf{a}\) \\
\hline
\end{tabular}

\section*{P: \begin{tabular}{|l|l|l|l|l|l|l|}
\hline \(\mathbf{a}\) & \(\mathbf{b}\) & \(\mathbf{a}\) & \(\mathbf{b}\) & \(\mathbf{a}\) & \(\mathbf{c}\) & \(\mathbf{a}\) \\
\hline
\end{tabular}}

Let us execute the KMP Algorithm to find whether 'P' occurs in 'T.'

For ' p ' the prefix function, ? was computed previously and is as follows:
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline q & \(\mathbf{1}\) & \(\mathbf{2}\) & 3 & \(\mathbf{4}\) & 5 & 6 & \\
\hline \(\mathbf{p}\) & a & b & A & b & a & c & \\
\hline\(\pi\) & 0 & 0 & 1 & 2 & 3 & 0 & \\
\hline
\end{tabular}

\section*{Solution:}

Initially: \(\mathrm{n}=\) size of \(\mathrm{T}=15\)
\(\mathrm{m}=\) size of \(\mathrm{P}=7\)

Step1: \(i=1, q=0\)
Comparing P [1] with T [1]

\(P\) [1] does not match with \(T\) [1]. ' \(p\) ' will be shifted one position to the right.
Step2: \(\mathrm{i}=2, \mathrm{q}=0\)
Comparing P [1] with T [2]

\(P\) [1] matches \(T\) [2]. Since there is a match, \(p\) is not shifted.

Step 3: \(\mathrm{i}=3, \mathrm{q}=1\)
Comparing P [2] with T [3] P [2] doesn't match with T [3]

Backtracking on p , Comparing \(\mathrm{P}[1]\) and \(\mathrm{T}[3]\)
Step4: \(i=4, q=0\)
Comparing P [1] with T [4] P [1] doesn't match with T [4]

Step5: \(\mathrm{i}=5, \mathrm{q}=0\)
\[
\text { Comparing } P \text { [1] with } T[5] \quad P[1] \text { match with } T[5]
\]

Step6: \(\mathrm{i}=6, \mathrm{q}=1\)
Comparing P [2] with T [6]
P [2] matches with T [6]

P:
Step7: \(\mathrm{i}=7, \mathrm{q}=2\)
Comparing P [3] with T [7]
P [3] matches with T [7]
T:

Step8: \(\mathrm{i}=8, \mathrm{q}=3\)
Comparing P [4] with T [8]
P [4] matches with T [8]
T:

Step9: \(i=9, q=4\)
\[
\text { Comparing } \mathrm{P} \text { [5] with } \mathrm{T} \text { [9] }
\]

Step10: \(\mathrm{i}=10, \mathrm{q}=5\)
Comparing P [6] with T [10]
P [6] doesn't match with T [10].

Backtracking on \(p\), Comparing \(P[4]\) with \(T[10]\) because after mismatch \(q=\pi[5]=3\)

Step11: \(\mathrm{i}=11, \mathrm{q}=4\)
Comparing P [5] with T [11] \(\quad \mathrm{P}\) [5] match with \(T\) [11]

T:
\begin{tabular}{|l|l|l|l|l|l|llll|l|l|l|}
\hline \(\mathbf{b}\) & \(\mathbf{a}\) & \(\mathbf{c}\) & \(\mathbf{b}\) & \(\mathbf{a}\) & \(\mathbf{b}\) & \(\mathbf{a}\) & \(\mathbf{b}\) & \(\mathbf{a}\) & \(\mathbf{b}\) & \(\mathbf{a}\) & \(\mathbf{c}\) & \(\mathbf{a}\) \\
\hline
\end{tabular}

Step12: \(\mathrm{i}=12, \mathrm{q}=5\)
Comparing P [6] with T [12]
\(P[6]\) matches with \(T\) [12

Step13: \(i=3, q=6\)
Comparing P [7] with T [13]
P [7] matches with T [1
T:

Pattern 'P' has been found to complexity occur in a string 'T.' The total number of shifts that took place for the match to be found is \(\mathrm{i}-\mathrm{m}=13-7=6\) shifts.

\section*{Trie | (Insert and Search)}

Difficulty Level : Medium
Last Updated : 25 May, 2022

Trie is an efficient information retrieval data structure. Using Trie, search complexities can be brought to optimal limit (key length). If we store keys in a binary search tree, a well balanced BST will need time proportional to \(\mathbf{M} * \log \mathbf{N}\), where \(M\) is the maximum string length and \(N\) is the number of keys in the tree. Using Trie, we can search the key in \(\mathrm{O}(\mathrm{M})\) time. However, the penalty is on Trie storage requirements (Please refer to Applications of Trie for more details)

Every node of Trie consists of multiple branches. Each branch represents a possible character of keys. We need to mark the last node of every key as the end of the word node. A Trie node field isEndOfWord is used to distinguish the node as the end of the word node. A simple structure to represent nodes of the English alphabet can be as follows,
// Trie node
struct TrieNode
\{
struct TrieNode * children[ALPHABET_SIZE];
// isEndOfWord is true if the node
// represents end of a word
bool isEndOfWord;
\};
Inserting a key into Trie is a simple approach. Every character of the input key is inserted as an individual Trie node. Note that the children is an array of pointers (or references) to next level trie nodes. The key character acts as an index to the array children. If the input key is new or an extension of the existing key, we need to construct non-existing nodes of the key, and mark the end of the word for the last node. If the input key is a prefix of the existing key in Trie, we simply mark the last node of the key as the end of a word. The key length determines Trie depth.
Searching for a key is similar to an insert operation, however, we only compare the characters and move down. The search can terminate due to the end of a string or lack of key in the trie. In the former case, if the isEndofWord field of the last node is true, then the key exists in the trie. In the second case, the search terminates without examining all the characters of the key, since the key is not present in the trie.
The following picture explains the construction of trie using keys given in the example below,

In the picture, every character is of type trie_node_t. For example, the root is of type trie_node_t, and it's children \(a, b\) and \(t\) are filled, all other nodes of root will be NULL. Similarly, "a" at the next level is having only one child (" \(n\) "), all other children are NULL. The leaf nodes are in blue.

\section*{UNIT-1}
1. Define algorithm. Describe the characteristics of the algorithm.
2. Write an algorithm to find the sum of first n integers and Derive its time complexity.
3. Explain the different looping statements used in pseudo code conventions.
4. How the Performance can be Analyzed? Explain with an example.
5. .Define the terms "Time complexity" and "Space complexity" of algorithms.

Give a notation for expressing such a complexity and explain the features of such a notation.
6. Define time and space complexity. Describe different notations used to represent these complexities.
7. Explain in detail about Recursive algorithms with neat examples.
8. Explain about Amortized analysis.
9. Define Omega notation. Explain the terms involved in it. Give an Example.
10. Explain about Asymptotic Notations with examples
11. Discuss the Pseudo code conventions for expressing algorithms.

12 .Explain about Union and Find operations on sets.
13. Explain about Tree traversal algorithm with example.
14. Explain about BFS and DFS.

\section*{UNIT-2}

\section*{DIVIDE AND CONQUER}
1. Explain the Divide and Conquer strategy. How it can be useful in the problem solving.(Control Abstration)
2. Briefly explain about Binary search and it's applications and derive its time complexity.
3. Explain the process of Binary Search with example.
4. Explain the Quick Sort method with example.
5. Derive the average case Time Complexity of Quick Sort.
6. Show the how Quick sorts the following sequence of keys in ascending order \(22,55,33,11,99,77,55,66,54,21,32\)
7. Compare and Contrast the performance analysis of Quick sort and Merge sort algorithm.
8. Explain how Quick sort algorithm performs in worst case with an example.
9. What is an importance of Pivot selection in Quick sort algorithm.
10. Explain the Merge Sort with example.
11. Draw the tree of calls of Merge Sort method for the following \(35,25,15,10,45,75,85,65,55,20,18\).
12. Explain how to find the Maximum and Minimum.
15. Explain Randomized Sorting Algorithm.
14. Explain Defective Chessboard method in Divide and Conquer approach.

\section*{THE GREEDY METHOD}
1. Write Greedy algorithm for sequencing unit time jobs with deadlines and profits.
2. What is the solution generated by the function JS when \(\mathrm{n}=7,(\mathrm{p} 1, \mathrm{p} 2, \ldots, \mathrm{p} 7)=\) \((3,5,20,18,1,6,30)\), and (d1, d2, ..., d7) \(=(1,3,4,3,2,1,2)\) ?
3. What is a Spanning tree? Explain Prim's Minimum cost spanning tree algorithm with suitable example.
4. Find the optimal solution of the Knapsack instance \(n=7, M=15,(p 1, p 2, \ldots p 7)=\) \((10,5,15,7,6,18,3)\) and (w1,w2,....w7) \(=(2,3,5,7,1,4,1)\)
5. Differentiate between Divide and Conquer algorithm \& greedy Algorithm
6. State the Job - Sequencing with deadlines problem. Find an optimal sequence to the \(\mathrm{n}=5\) Jobs where profits \((\mathrm{P} 1, \mathrm{P} 2, \mathrm{P} 3, \mathrm{P} 4, \mathrm{P} 5)=(20,15,10,5,1)\) and deadlines \((\mathrm{d} 1, \mathrm{~d} 2, \mathrm{~d} 3, \mathrm{~d} 4, \mathrm{~d} 5)=(2,2,1,3,3)\).
7. What is a Minimum Cost Spanning tree? Explain Kruskal's Minimum cost spanning tree algorithm with suitable example.
8. Discuss the single - source shortest paths algorithm with suitable example.
9. Explain the Dijkstra's algorithm for single source shortest path problem with an example.

\section*{UNIT - 3}

\section*{DYNAMIC PROGRAMMING}
1. Draw an Optimal Binary Search Tree for \(\mathrm{n}=4\) identifiers (\(\mathrm{a} 1, \mathrm{a} 2, \mathrm{a} 3, \mathrm{a} 4)=(\) do,if, read, while) \(\mathrm{P}(1: 4)=(3,3,1,1)\) and \(\mathrm{Q}(0: 4)=(2,3,1,1,1)\).
2. What is the principle difference between the divide and conquer technique and dynamic programming technique?
3. Explain the Travelling sales man problem.
4. Explain the Optimal Binary Search Tree with an example.
5. Explain the methodology of Dynamic programming. List the applications of Dynamic programming.
6. What is All - Pair Shortest Path problem (APSP)? Discuss the Floyd's APSP algorithm and discuss the analysis of this algorithm.
7. What is principle's of optimality? Explain how travelling sales person problem uses the dynamic programming technique with example.

\section*{UNIT - 4}

\section*{BACKTRACKING}

1 What is a Hamiltonian Cycle? Explain how to find Hamiltonian path and cycle using backtracking algorithm.
2. Discuss the 4 - queen's problem. Draw the portion of the state space tree for \(n\) \(=4\) queens using backtracking algorithm.
3.Give the solution to the 8 -queens problem using backtracking
4. Write an algorithm to determine the Hamiltonian cycle in a give graph using backtracking.
5. Explain the solution to the graph coloring problem using backtracking.
5.How the reliability of a system is determined using dynamic programming? Explain.
6. Explain the Knapsack problem with an example?
7. Write control abstraction for backtracking. [7M]
8. Explain the Graph - coloring problem. And draw the state space tree for \(\mathrm{m}=3\) colors \(\mathrm{n}=4\) vertices graph. Discuss the time and space complexity.

\section*{BRANCH AND BOUND}
1. Give the \(0 / 1\) Knapsack LCBB algorithm. Explain how to find optimal solution using variable - tuple sized approach.
2. Distinguish between backtracking and branch - and bound techniques.
3. Explain how branch and bound technique is used to solve \(0 / 1\) knapsack problem.
4. What are the differences between FIFO and LC branch and bound solutions?
5. What are the differences between backtracking and branch and bound solutions?
6. Explain the LC branch and bound algorithm.
7. Explain the FIFO BB \(0 / 1\) Knapsack problem procedure with the knapsack instance for \(\mathrm{n}=4 . \mathrm{m}=15,(\mathrm{p} 1, \mathrm{p} 2, \mathrm{p} 3, \mathrm{p} 4)=(10,10,12,18)(\mathrm{w} 1, \mathrm{w} 2, \mathrm{w} 3, \mathrm{w} 4)=(2,4,6\),
8. Draw the portion of the state space tree and find optimal solution.
9. Draw the portion of state space tree generated by FIFOBB for the job sequencing with deadlines instance \(\mathrm{n}=5,(\mathrm{p} 1, \mathrm{p} 2, . ., \mathrm{p} 5)=(6,3,4,8,5)\), (\(\mathrm{t} 1, \mathrm{t} 2, . . \mathrm{t} 5)\) \(=(2,1,2,1,1)\) and \((\mathrm{d} 1, \mathrm{~d} 2, . . \mathrm{d} 5)=(3,1,4,2,4)\).What is the penalty corresponding to an optimal solution.
10. Explain \(0 / 1\) Knapsack problem with respect to branch and bound method.
11.

\section*{UNIT-5}
1. Explain NP-Hard and NP-Complete problems.
2. Explain Cook's Theorem.
3. Explain String Matching and its applications.
4. Explain Naïve String Matching Algorithm
5. Explain Robin_Karo Algorithm.
6. Explain Knuth-Morris_pratt Automata```

